版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
黑龙江省佳木斯市建三江一中2026届高一数学第一学期期末质量检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若函数满足且的最小值为,则函数的单调递增区间为A. B.C. D.2.若不等式(>0,且≠1)在[1,2]上恒成立,则的取值范围是A.(1,2) B.(2,)C.(0,1)(2,) D.(0,)3.已知扇形的圆心角为,面积为8,则该扇形的周长为()A.12 B.10C. D.4.已知a=log20.3,b=20.3,c=0.30.3,则a,b,c三者的大小关系是()A. B.C. D.5.已知函数,若函数恰有8个不同零点,则实数a的取值范围是()A. B.C. D.6.函数fxA.0 B.1C.2 D.37.一名篮球运动员在最近6场比赛中所得分数的茎叶图如图所示,由于疏忽,茎叶图中的两个数据上出现了污点,导致这两个数字无法辨认,但统计员记得除掉污点2处的数字不影响整体中位数,且这六个数据的平均数为17,则污点1,2处的数字分别为A.5,7 B.5,6C.4,5 D.5,58.已知函数,若方程有8个相异实根,则实数b的取值范围为()A. B.C. D.9.下列函数中,既不是奇函数也不是偶函数的是A. B.C. D.10.半径为1cm,圆心角为的扇形的弧长为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若“”是“”的充要条件,则实数m的取值是_________12.将函数的图象向左平移个单位长度后得到的图象,则__________.13.命题“,”的否定是______14.已知,且的终边上一点P的坐标为,则=______15.水车在古代是进行灌溉引水的工具,是人类的一项古老的发明,也是人类利用自然和改造自然的象征.如图是一个半径为的水车,以水车的中心为原点,过水车的中心且平行于水平面的直线为轴,建立如图平面直角坐标系,一个水斗从点出发,沿圆周按逆时针方向匀速旋转,且旋转一周用时秒.经过秒后,水斗旋转到点,设点的坐标为,其纵坐标满足,当秒时,___________.16.设函数f(x)=-x+2,则满足f(x-1)+f(2x)>0的x的取值范围是______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.因新冠肺炎疫情影响,呼吸机成为紧缺商品,某呼吸机生产企业为了提高产品的产量,投入万元安装了一台新设备,并立即进行生产,预计使用该设备前年的材料费、维修费、人工工资等共为()万元,每年的销售收入万元.设使用该设备前年的总盈利额为万元.(1)写出关于的函数关系式,并估计该设备从第几年开始盈利;(2)使用若干年后,对该设备处理的方案有两种:案一:当总盈利额达到最大值时,该设备以10万元的价格处理;方案二:当年平均盈利额达到最大值时,该设备以50万元的价格处理;问哪种方案处理较为合理?并说明理由.18.已知函数,函数的图像与的图像关于对称.(1)求的值;(2)若函数在上有且仅有一个零点,求实数k取值范围;(3)是否存在实数m,使得函数在上的值域为,若存在,求出实数m的取值范围;若不存在,说明理由.19.某中学共有3000名学生,其中高一年级有1200名学生,为了解学生的睡眠情况,现用分层抽样的方法,在三个年级中抽取了200名学生,依据每名学生的睡眠时间(单位:小时),绘制出了如图所示的频率分布直方图.(1)求样本中高一年级学生的人数及图中a的值;(2)估计样本数据中位数(保留两位小数);(3)估计全校睡眠时间不低于7个小时的学生人数.20.已知线段的端点的坐标为,端点在圆上运动.(1)求线段中点的轨迹的方程;(2)若一光线从点射出,经轴反射后,与轨迹相切,求反射光线所在的直线方程.21.已知向量=(3,4),=(1,2),=(-2,-2)(1)求||,||的值;(2)若=m+n,求实数m,n的值;(3)若(+)∥(-+k),求实数k的值
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】分析:首先根据诱导公式和辅助角公式化简函数解析式,之后应用题的条件求得函数的最小正周期,求得的值,从而求得函数解析式,之后利用整体思维,借助于正弦型函数的解题思路,求得函数的单调增区间.详解:,根据题中条件满足且的最小值为,所以有,所以,从而有,令,整理得,从而求得函数的单调递增区间为,故选D.点睛:该题考查的是有关三角函数的综合问题,涉及到的知识点有诱导公式、辅助角公式、函数的周期以及正弦型函数的单调区间的求法,在结题的过程中,需要对各个知识点要熟记,解题方法要明确.2、B【解析】分类讨论:①若a>1,由题意可得:在区间上恒成立,即在区间上恒成立,则,结合反比例函数的单调性可知当时,,此时;②若0<a<1,由题意可得:在区间上恒成立,即,,函数,结合二次函数的性质可知,当时,取得最大值1,此时要求,与矛盾.综上可得:的取值范围是(2,).本题选择B选项.点睛:在解决与对数函数相关的比较大小或解不等式问题时,要优先考虑利用对数函数的单调性来求解.在利用单调性时,一定要明确底数a的取值对函数增减性的影响,及真数必须为正的限制条件3、A【解析】利用已知条件求出扇形的半径,即可得解周长【详解】解:设扇形的半径r,扇形OAB的圆心角为4弧度,弧长为:4r,其面积为8,可得4r×r=8,解得r=2扇形的周长:2+2+8=12故选:A4、D【解析】利用指数函数与对数函数的单调性即可得出大小关系【详解】∵a=log20.3<0,b=20.3>1,c=0.30.3∈(0,1),则a,b,c三者的大小关系是b>c>a.故选:D【点睛】本题考查了指数函数与对数函数的单调性,考查了推理能力与计算能力,属于基础题5、A【解析】利用十字相乘法进行因式分解,然后利用换元法,作出的图象,利用数形结合判断根的个数即可.【详解】由,得,解得或,作出的图象如图,则若,则或,设,由得,此时或,当时,,有两根,当时,,有一个根,则必须有,有个根,设,由得,若,由,得或,有一个根,有两个根,此时有个根,不满足题意;若,由,得,有一个根,不满足条件.若,由,得,有一个根,不满足条件;若,由,得或或,当,有一个根,当时,有个根,当时,有一个根,此时共有个根,满足题意.所以实数a的取值范围为.故选:A.【点睛】方法点睛:已知函数零点(方程根)的个数,求参数取值范围的三种常用的方法:(1)直接法,直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围;(2)分离参数法,先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法,先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.一是转化为两个函数的图象的交点个数问题,画出两个函数的图象,其交点的个数就是函数零点的个数,二是转化为的交点个数的图象的交点个数问题第II卷(非选择题6、B【解析】作出函数图像,数形结合求解即可.【详解】解:根据题意,x3-1故函数y=x3与由于函数y=x3与所以方程x3所以函数fx故选:B7、A【解析】由于除掉处的数字后剩余个数据的中位数为,故污点处的数字为,,则污点处的数字为,故选A.8、B【解析】画出的图象,根据方程有个相异的实根列不等式,由此求得的取值范围.【详解】画出函数的图象如图所示,由题意知,当时,;当时,.令,则原方程化为.∵方程有8个相异实根,∴关于t的方程在上有两个不等实根.令,,∴,解得.故选:B9、D【解析】根据函数奇偶性的概念,逐项判断即可.【详解】A中,由得,又,所以是偶函数;B中,定义域为R,又,所以是偶函数;C中,定义域为,又,所以是奇函数;D中,定义域为R,且,所以非奇非偶.故选D【点睛】本题主要考查函数的奇偶性,熟记概念即可,属于基础题型.10、D【解析】利用扇形弧长公式直接计算即可.【详解】圆心角化为弧度为,则弧长为.故选:D.二、填空题:本大题共6小题,每小题5分,共30分。11、0【解析】根据充要条件的定义即可求解.【详解】,则{x|}={x|},即.故答案为:0.12、0【解析】根据题意,可知将函数的图象向右平移个单位长度后得到,由函数图象的平移得出的解析式,即可得出的结果.【详解】解:由题意可知,将函数的图象向右平移个单位长度后得到,则,所以.故答案为:0.13、.【解析】全称命题的否定:将任意改为存在并否定原结论,即可知原命题的否定.【详解】由全称命题的否定为特称命题,所以原命题的否定:.故答案为:.14、【解析】先求解,判断的终边在第四象限,计算,结合,即得解【详解】由题意,故点,故终边在第四象限且,又故故答案为:15、【解析】求出关于的函数解析式,将代入函数解析式,求出的值,可得出点的坐标,进而可求得的值.【详解】由题意可知,,函数的最小正周期为,则,所以,,点对应,,则,可得,,,故,当时,,因为,故点不与点重合,此时点,则.故答案为:.16、【解析】由函数的解析式可得,据此解不等式即可得答案【详解】解:根据题意,函数,则,若,即,解可得:,即的取值范围为;故答案为.【点睛】本题考查函数的单调性的应用,涉及不等式的解法,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),3年;(2)第二种方案更合适,理由见解析.【解析】(1)利用年的销售收入减去成本,求得的表达式,由,解一元二次不等式求得从第年开始盈利.(2)方案一:利用配方法求得总盈利额的最大值,进而求得总利润;方案二:利用基本不等式求得时年平均利润额达到最大值,进而求得总利润.比较两个方案获利情况,作出合理的处理方案.【详解】(1)由题意得:由得即,解得由,设备企业从第3年开始盈利(2)方案一总盈利额,当时,故方案一共总利润,此时方案二:每年平均利润,当且仅当时等号成立故方案二总利润,此时比较两种方案,获利都是170万元,但由于第一种方案只需要10年,而第二种方案需要6年,故选择第二种方案更合适.【点睛】本小题主要考查一元二次不等式的解法,考查基本不等式求最值,属于中档题.18、(1)(2)或(3)存在,【解析】(1)由题意,将代入可得答案.(2)由题意即关于x的方程在上有且仅有一个实根,设,作出其函数图像,数形结合可得答案.(3)设记,则函数在上单调递增,根据题意若存在实数m满足条件,则a,b是方程的两个不等正根,由二次方程的根的分布的条件可得答案.【小问1详解】由题意,,所以【小问2详解】由题意即关于x的方程在上有且仅有一个实根,设,作出函数在上的图像(如下图),,由题意,直线与该图像有且仅有一个公共点,所以实数k的取值范围是或【小问3详解】记,其中,在定义域上单调递增,则函数在上单调递增,若存在实数m,使得的值域为,则,即a,b是方程的两个不等正根,即a,b是的两个不等正根,所以解得,所以实数m的取值范围是.【点睛】思路点睛:函数的零点问题可转化为两个熟悉函数的图象的交点问题来处理,而二次方程的零点问题,可结合判别式的正负、特殊点处的函数值的正负、对称轴的位置等来处理.19、(1)人数为,;(2)7.42;(3)约为人.【解析】(1)由分层抽样等比例性质求高一年级学生的人数,根据直方图及频率和为1求参数a.(2)由频率直方图及中位数的性质估计中位数.(3)由直方图计算区间的频率,进而估计全校睡眠时间不低于7个小时的学生人数.【小问1详解】由分层抽样等比例的性质,样本中高一年级学生的人数为.由,可得.【小问2详解】设中位数为x,由、,知:,∴.得,故样本数据的中位数约为7.42.【小问3详解】由图可知,样本数据落在的频率为.故全校睡眠时间不低于7个小时的学生人数约为人.20、(1)(2),【解析】(1)设,利用中点坐标公式,转化为的坐标,代入圆的方程求解即可(2)设关于轴对称点设过的直线,利用点到直线的距离公式化简求解即可【详解】设,则代入轨迹的方程为(2)设关于轴对称点设过的直线,即∵,,∴
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- APP运营专员招聘面试题及答案
- “梦工场”招商银行南通分行2026寒假实习生招聘备考题库附答案
- 中共赣州市赣县区委政法委下属事业单位面向全区选调工作人员参考题库附答案
- 乐山市公安局2025年第四批次警务辅助人员招聘(40人)考试备考题库必考题
- 北京市石景山区教育系统教育人才库教师招聘备考题库附答案
- 山东高速集团有限公司2025年下半年校园招聘(339人) 考试备考题库附答案
- 广安市关于2025年社会化选聘新兴领域党建工作专员的考试备考题库必考题
- 永丰县2025年退役士兵选调考试【25人】考试备考题库必考题
- 浙江国企招聘-2025杭州临平环境科技有限公司公开招聘49人参考题库附答案
- 荥经县财政局关于荥经县县属国有企业2025年公开招聘工作人员的(14人)参考题库附答案
- PCR技术在食品中的应用
- 输液渗漏处理课件
- 教育培训行业发展趋势与机遇分析
- 2025医疗器械经营质量管理体系文件(全套)(可编辑!)
- 物业与商户装修协议书
- 2025年五上课外阅读题库及答案
- 湖南铁道职业技术学院2025年单招职业技能测试题
- GB/T 46318-2025塑料酚醛树脂分类和试验方法
- 果农水果出售合同范本
- 小学三年级数学选择题专项测试100题带答案
- 2025年尿液分析仪行业分析报告及未来发展趋势预测
评论
0/150
提交评论