版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届云南省昭通市绥江县一中数学高一上期末考试试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数,则的最大值为()A. B.C.1 D.2.已知某扇形的面积为,圆心角为,则该扇形的半径为()A.3 B.C.9 D.3.下列函数中,最小正周期是且是奇函数的是()A. B.C. D.4.已知,,,则大小关系为()A. B.C. D.5.为了得到函数的图象,只需将余弦曲线上所有的点A.向右平移个单位 B.向左平移个单位C向右平移个单位 D.向左平移个单位6.如图()四边形为直角梯形,动点从点出发,由沿边运动,设点运动的路程为,面积为.若函数的图象如图(),则的面积为()A. B.C. D.7.若,则的最小值是()A.1 B.2C.3 D.48.如果幂函数的图象经过点,则在定义域内A.为增函数 B.为减函数C.有最小值 D.有最大值9.若函数的最大值为,最小值为-,则的值为A. B.2C. D.410.已知扇形的圆心角为2弧度,其所对的弦长为2,则扇形的弧长等于A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若方程组有解,则实数的取值范围是__________12.函数=(其中且)的图象恒过定点,且点在幂函数的图象上,则=______.13.已知为奇函数,,则____________14.若函数在区间上有两个零点,则实数的取值范围是_______.15.若,则______.16.化简________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知A(3,7)、B(3,-1)、C(9,-1),求△ABC的外接圆方程.18.已知函数的部分图象如下图所示(1)求函数的解析式;(2)讨论函数在上的单调性19.某城市上年度电价为0.80元/千瓦时,年用电量为千瓦时.本年度计划将电价降到0.55元/千瓦时~0.7元/千瓦时之间,而居民用户期望电价为0.40元/千瓦时(该市电力成本价为0.30元/千瓦时),经测算,下调电价后,该城市新增用电量与实际电价和用户期望电价之差成反比,比例系数为.试问当地电价最低为多少元/千瓦时,可保证电力部门的收益比上年度至少增加20%.20.如图,正方体的棱长为1,CB′∩BC′=O,求:(1)AO与A′C′所成角的度数;(2)AO与平面ABCD所成角的正切值;(3)证明平面AOB与平面AOC垂直.21.已知函数在区间上的最大值为6.(1)求常数m的值;(2)当时,将函数的图象上所有点的横坐标缩短到原来的(纵坐标不变)得到函数,求函数的单调递减区间、对称中心.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】,然后利用二次函数知识可得答案.【详解】,令,则,当时,,故选:C2、A【解析】根据扇形面积公式求出半径.【详解】扇形的面积,解得:故选:A3、A【解析】根据三角函数的周期性和奇偶性对选项逐一分析,由此确定正确选项.【详解】A选项,的最小正周期是,且是奇函数,A正确.B选项,的最小正周期是,且是奇函数,B错误.C选项,的最小正周期为,且是奇函数,C错误.D选项,的最小正周期是,且是偶函数,D错误.故选:A4、B【解析】分别判断与0,1等的大小关系判断即可.【详解】因为.故.又,故.又,故.所以.故选:B【点睛】本题主要考查了根据指对幂函数的单调性判断函数值大小的问题,属于基础题.5、C【解析】利用函数的图象变换规律,得出结论【详解】把余弦曲线上所有的点向右平行移动个单位长度,可得函数的图象,故选C【点睛】本题主要考查函数的图象变换规律,属于基础题6、B【解析】由题意,当在上时,;当在上时,图()在,时图象发生变化,由此可知,,根据勾股定理,可得,所以本题选择B选项.7、C【解析】采用拼凑法,结合基本不等式即可求解.【详解】因为,,当且仅当时取到等号,故的最小值是3.故选:C8、C【解析】由幂函数的图象经过点,得到,由此能求出函数的单调性和最值【详解】解:幂函数的图象经过点,,解得,,在递减,在递增,有最小值,无最大值故选【点睛】本题考查幂函数的概念和应用,是基础题.解题时要认真审题,仔细解答9、D【解析】当时取最大值当时取最小值∴,则故选D10、A【解析】根据题意画出图形,结合图形求出半径r,再计算弧长【详解】如图所示,,,过点O作,C垂足,延长OC交于D,则,;中,,从而弧长为,故选A【点睛】本题考查了弧长公式的应用问题,求出扇形的半径是解题的关键,属于基础题二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】,化为,要使方程组有解,则两圆相交或相切,,即或,,故答案为.12、9【解析】由题意知,当时,.即函数=的图象恒过定点.而在幂函数的图象上,所以,解得,即,所以=9.13、【解析】根据奇偶性求函数值.【详解】因为奇函数,,所以.故答案为:.14、【解析】由题意根据数形结合,只要,并且对称轴在之间,,解不等式组即可【详解】由题意,要使函数区间上有两个零点,只要,即,解得,故答案为【点睛】本题主要考查了二次函数的性质,函数零点的分布,关键是结合二次函数图象等价得到不等式组,常见的形式有考虑端点值处函数值的符号,对称轴与所给区间的关系,对称轴处函数值的符号等,属于中档题.15、【解析】根据指对互化,指数幂的运算性质,以及指数函数的单调性即可解出【详解】由得,即,解得故答案为:16、【解析】观察到,故可以考虑直接用辅助角公式进行运算.【详解】故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、【解析】设△ABC外接圆的方程为x2+y2+Dx+Ey+F=0,把A(1,0),B(0,1),C(3,4)代入,能求出△ABC外接圆的方程【详解】设外接圆的方程为.将ABC三点坐标带人方程得:解得圆的方程为【点睛】本题考查圆的方程的求法,解题时要认真审题,注意待定系数法的合理运用18、(1)(2)在,上单调递减,在,和,上单调递增【解析】(1)由图知,,最小正周期,由,求得的值,再将点,代入函数的解析式中,求出的值,即可;(2)由,,知,,再结合正弦函数的单调性,即可得解【小问1详解】解:由图知,,最小正周期,因为,所以,将点,代入函数的解析式中,得,所以,,即,,因为,所以,故函数的解析式为;【小问2详解】解:因为,,所以,,令,则,,因为函数在,上单调递减,在,和,上单调递增,令,得,令,得,令,得,所以在,上单调递减,在,和,上单调递增19、电价最低为元/千瓦时,可保证电力部门的收益比上一年度至少增加.【解析】根据题意列新增用电量,再乘以单价利润得收益,列不等式,解一元二次不等式,根据限制条件取交集得电价取值范围,即得最低电价试题解析:设新电价为元/千瓦时,则新增用电量为千瓦时.依题意,有,即,整理,得,解此不等式,得或,又,所以,,因此,,即电价最低为元/千瓦时,可保证电力部门的收益比上一年度至少增加.20、(1)30°(2)(3)见解析【解析】(1)以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,利用向量法求AO与A′C′所成角的度数;(2)利用向量法求AO与平面ABCD所成角的正切值;(3)证明平面AOB与平面AOC的法向量垂直.【详解】(1)以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,A(1,0,0),O(),(1,0,1),C′(0,1,1),(,1,),(﹣1,1,0),设AO与A′C′所成角为θ,则cosθ,∴θ=30°,∴AO与A′C′所成角为30°.(2)∵(),面ABCD的法向量为(0,0,1),设AO与平面ABCD所成角为α,则sinα=|cos|,cosα,∴tanα.∴AO与平面ABCD所成角的正切值为.(3)C(0,1,0),(),(0,1,0),(﹣1,1,0),设平面AOB的法向量(x,y,z),则,取x=1,得(1,0,1),设平面AOC的法向量(a,b,c),则,取a=1,得(1,1,﹣1),∵1+0﹣1=0,∴平面AOB与平面AOC垂直.【点睛】本题主要考查空间角的求法和面面垂直的证明,意在考查学生对这些知识的理解掌握水平.21、(1)3(2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026北京航空航天大学实验学校聘用编人员F岗招聘4人备考考试试题及答案解析
- 2026山东济南市历城区属事业单位招聘初级综合类岗位人员备考题库及完整答案详解一套
- 2026江西赣州发展产业链管理有限公司招聘仓库监管员4人备考题库含答案详解
- 2026年上半年云南民族大学招聘硕士人员备考题库(7人)及答案详解(夺冠系列)
- 2026山东事业单位统考菏泽市牡丹区招聘备考题库及答案详解(易错题)
- 2026年淄博高青县教育和体育局所属事业单位公开招聘工作人员的备考题库(25人)及1套完整答案详解
- 2026新疆巴州库尔勒市足球运动协会招募足球裁判员备考题库及参考答案详解1套
- 2026广东佛山市顺德区龙江镇华东小学语文、数学、英语临聘教师招聘备考题库(含答案详解)
- 2026年心理咨询师技能提升心理健康评估与治疗方法题目集
- 2026江西南昌安义县社会福利院招聘失能照护护理员1人备考题库及答案详解参考
- 建筑施工公司成本管理制度(3篇)
- 2025年妇产科副高试题库及答案
- 全国物业管理法律法规及案例解析
- 2025年度党委党建工作总结
- 抖音来客本地生活服务酒旅酒店民宿旅游景区商家代运营策划方案
- 新质生产力在体育产业高质量发展中的路径探索
- 2025年公民素质养成知识考察试题及答案解析
- 北仑区打包箱房施工方案
- 老年人营养和饮食
- 车载光通信技术发展及无源网络应用前景
- 2026届上海市金山区物理八年级第一学期期末调研试题含解析
评论
0/150
提交评论