江苏省扬州市武坚中学2026届高一数学第一学期期末调研模拟试题含解析_第1页
江苏省扬州市武坚中学2026届高一数学第一学期期末调研模拟试题含解析_第2页
江苏省扬州市武坚中学2026届高一数学第一学期期末调研模拟试题含解析_第3页
江苏省扬州市武坚中学2026届高一数学第一学期期末调研模拟试题含解析_第4页
江苏省扬州市武坚中学2026届高一数学第一学期期末调研模拟试题含解析_第5页
已阅读5页,还剩7页未读 继续免费阅读

付费下载

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏省扬州市武坚中学2026届高一数学第一学期期末调研模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.入冬以来,雾霾天气在部分地区频发,给人们的健康和出行造成严重的影响.经研究发现,工业废气等污染排放是雾霾形成和持续的重要因素,治理污染刻不容缓.为降低对空气的污染,某工厂采购一套废气处理装备,使工业生产产生的废气经过过滤后再排放.已知过滤过程中废气的污染物数量P(单位:mg/L)与过滤时间t(单位:h)间的关系为(,k均为非零常数,e为自然对数底数),其中为t=0时的污染物数量,若经过3h处理,20%的污染物被过滤掉,则常数k的值为()A. B.C. D.2.函数的减区间为()A. B.C. D.3.下列函数在定义域内既是奇函数,又是减函数的是()A. B.C. D.4.若角的终边上一点,则的值为()A. B.C. D.5.若,,则等于()A. B.C. D.6.已知,则().A. B.C. D.7.已知,则()A. B.C. D.8.若方程x2+ax+a=0的一根小于﹣2,另一根大于﹣2,则实数a的取值范围是()A.(4,+∞) B.(0,4)C.(﹣∞,0) D.(﹣∞,0)∪(4,+∞)9.在下列各区间上,函数是单调递增的是A. B.C. D.10.已知集合,集合,则()A.{-1,0,1} B.{1,2}C.{-1,0,1,2} D.{0,1,2}二、填空题:本大题共6小题,每小题5分,共30分。11.数据的第50百分位数是__________.12.已知函数是定义在上的奇函数,当时,,则的值为______13.已知实数满足,则________14.已知平面向量,的夹角为,,则=______15.2021年10月16日0时23分,搭载神舟十三号载人飞船的长征二号F遥十三运载火箭,在酒泉卫星发射中心点火升空.约582秒后,载人飞船与火箭成功分离,进入预定轨道,发射取得圆满成功.此次航天飞行任务中,火箭起到了非常重要的作用.火箭质量是箭体质量与燃料质量的和,在不考虑空气阻力的条件下,燃料质量不同的火箭的最大速度之差与火箭质量的自然对数之差成正比.已知某火箭的箭体质量为mkg,当燃料质量为mkg时,该火箭的最大速度为2ln2km/s,当燃料质量为时,该火箭最大速度为2km/s.若该火箭最大速度达到第一宇宙速度7.9km/s,则燃料质量是箭体质量的_______________倍.(参考数据:)16.设,且,则的取值范围是________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.体育课上,小明进行一项趣味测试,在操场上从甲位置出发沿着同一跑道走到乙位置,有两种不同的行走方式(以下).方式一:小明一半的时间以的速度行走,刹余一半时间换为以的速度行走,平均速度为;方式二:小明一半的路程以的速度行走,剩余一半路程换为以的速度行走,平均速度为;(1)试求两种行走方式的平均速度;(2)比较的大小.18.已知全集U=R,集合,,求:(1)A∩B;(2).19.如图,在四棱锥中,,,,且,分别为的中点.(1)求证:平面;(2)求证:平面;(3)若二面角的大小为,求四棱锥的体积.20.函数是定义在上的奇函数,且.(1)确定函数的解析式;(2)用定义证明在上是增函数.21.计算下列式子的值:(1);(2).

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】由题意可得,从而得到常数k的值.【详解】由题意可得,∴,即∴故选:A2、D【解析】先气的函数的定义域为,结合二次函数性质和复合函数的单调性的判定方法,即可求解.【详解】由题意,函数有意义,则满足,即,解得,即函数的定义域为,令,可得其开口向下,对称轴的方程为,所以函数在区间单调递增,在区间上单调递减,根据复合函数的单调性,可得函数在上单调递减,即的减区间为.故选:D.3、D【解析】利用常见函数的奇偶性和单调性逐一判断即可.【详解】对于A,,是偶函数,不满足题意对于B,是奇函数,但不是减函数,不满足题意对于C,,是奇函数,因为是增函数,是减函数,所以是增函数,不满足题意对于D,是奇函数且是减函数,满足题意故选:D4、B【解析】由三角函数的定义即可得到结果.【详解】∵角的终边上一点,∴,∴,故选:B【点睛】本题考查三角函数的定义,考查诱导公式及特殊角的三角函数值,属于基础题.5、D【解析】根据三角函数的诱导公式即可化简求值.【详解】∵,,,,,.故选:D.6、C【解析】将分子分母同除以,再将代入求解.【详解】.故选:C【点睛】本题主要考查同角三角函数基本关系式,还考查了运算求解的能力,属于基础题.7、C【解析】先对两边平方,构造齐次式进而求出或,再用正切的二倍角公式即可求解.【详解】解:对两边平方得,进一步整理可得,解得或,于是故选:C【点睛】本题考查同角三角函数关系和正切的二倍角公式,考查运算能力,是中档题.8、A【解析】令,利用函数与方程的关系,结合二次函数的性质,列出不等式求解即可.【详解】令,∵方程的一根小于,另一根大于,∴,即,解得,即实数的取值范围是,故选A.【点睛】本题考查一元二次函数的零点与方程根的关系,数形结合思想在一元二次函数中的应用,是基本知识的考查9、C【解析】根据选项的自变量范围判断函数的单调区间即可.【详解】当时,,由正弦函数单调性知,函数单增区间应满足,即,观察选项可知,是函数的单增区间,其余均不是,故选:C10、B【解析】由交集定义求得结果.【详解】由交集定义知故选:B二、填空题:本大题共6小题,每小题5分,共30分。11、16【解析】第50百分位数为数据的中位数,即得.【详解】数据的第50百分位数,即为数据的中位数为.故答案为:16.12、1【解析】根据题意,由函数在(﹣∞,0)上的解析式可得f(﹣1)的值,又由函数为奇函数可得f(1)=﹣f(﹣1),即可得答案【详解】根据题意,当x∈(﹣∞,0)时,f(x)=2x3+x2,则f(﹣1)=2×(﹣1)3+(﹣1)2=﹣1,又由函数奇函数,则f(1)=﹣f(﹣1)=1;故答案为1【点睛】本题考查函数奇偶性的应用,注意利用奇偶性明确f(1)与f(﹣1)的关系13、4【解析】方程的根与方程的根可以转化为函数与函数交点的横坐标和函数与函数交点的横坐标,再根据与互为反函数,关于对称,即可求出答案.【详解】,,令,,此方程的解即为函数与函数交点的横坐标,设为,如下图所示;,此方程的解即为函数与函数交点的横坐标,设为,如下图所示,与互反函数,关于对称,联立方程,解得,即,.故答案为:4.14、【解析】=代入各量进行求解即可.【详解】=,故答案.【点睛】本题考查了向量模的求解,可以通过先平方再开方即可,属于基础题.15、51【解析】设燃料质量不同的火箭的最大速度之差与火箭质量的自然对数之差成正比的比例系数为k,根据条件列方程求出k值,再设当该火箭最大速度达到第--宇宙速度7.9km/s时,燃料质量是箭体质量的a倍,根据题中数据再列方程可得a值.【详解】设燃料质量不同的火箭的最大速度之差与火箭质量的自然对数之差成正比的比例系数为k,则,解得,设当该火箭最大速度达到第一宇宙速度7.9km/s时,燃料质量是箭体质量的a倍,则,得,则燃料质量是箭体质量的51倍故答案为:51.16、【解析】由题意得,,又因为,则的取值范围是三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),(2)【解析】(1)直接利用平均速度的定义求出;(2)利用作差法比较大小.【小问1详解】设方式一中小明行走的总路程为s,所用时间为,由题意得,可知设方式二中所用时间为,总路程为s,则【小问2详解】.因为且,所以,即.18、(1);(2)(-∞,3)∪[4,+∞)【解析】(1)化简集合B,直接求交集即可;(2)求出集合B的补集,进而求并集即可.【详解】(1)由已知得:B=(-∞,3),A=[1,4),∴A∩B=[1,3)(2)由已知得:=(-∞,1)∪[4,+∞),∴()∪B=(-∞,3)∪[4,+∞)【点睛】本题考查集合的基本运算,借助数轴是求解交、并、补集的好方法,常考题型19、(1)见解析(2)见解析(3)【解析】(1)取的中点,根据题意易证四边形为平行四边形,所以,从而易证结论;(2)由,可得线面垂直;(3)由二面角的大小为,可得,求出底面直角梯形的面积,进而可得四棱锥的体积.试题解析:(1)取的中点,连接,∵为中点,∴,由已知,∴,∴四边形为平行四边形,∴.又平面,平面,∴平面.(2)连接,∵,∴,又,∴又,为中点,∴,∴,∵,∴平面.(3)取的中点,连接.∴,,∵,∴,又,为的中点,∴,故为二面角的平面角.∴,∵平面,∴,由已知,四边形为直角梯形,∴,∴.点睛:垂直、平行关系证明中应用转化与化归思想的常见类型.(1)证明线面、面面平行,需转化为证明线线平行.(2)证明线面垂直,需转化为证明线线垂直.(3)证明线线垂直,需转化为证明线面垂直.20、(1);(2)证明见解析.【解析】(1)由函数是定义在上的奇函数,则,解得的值,再根据,解得的值从而求得的解析式;(2)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论