江苏省常州市2026届数学高二上期末统考试题含解析_第1页
江苏省常州市2026届数学高二上期末统考试题含解析_第2页
江苏省常州市2026届数学高二上期末统考试题含解析_第3页
江苏省常州市2026届数学高二上期末统考试题含解析_第4页
江苏省常州市2026届数学高二上期末统考试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

付费下载

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏省常州市2026届数学高二上期末统考试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.抛掷一枚质地均匀的骰子两次,记{两次的点数均为奇数},{两次的点数之和为8},则()A. B.C. D.2.已知函数的图象是下列四个图象之一,且其导函数的图象如图所示,则该函数的图象是()A. B.C. D.3.已知,若,是第二象限角,则=()A. B.5C. D.104.将函数的图象向左平移个单位长度后,得到函数的图象,则()A. B.C. D.5.已知双曲线C1的一条渐近线方程为y=kx,离心率为e1,双曲线C2的一条渐近线方程为y=x,离心率为e2,且双曲线C1、C2在第一象限交于点(1,1),则=()A.|k| B.C.1 D.26.已知,则下列说法错误的是()A.若,分别是直线,的方向向量,则直线,所成的角的余弦值是B.若,分别是直线l的方向向量与平面的法向量,则直线l与平面所成的角的正弦值是C.若,分别是平面,的法向量,则平面,所成的角的余弦值是D.若,分别是直线l的方向向量与平面的法向量,则直线l与平面所成的角的正弦值是7.如图,已知直线AO垂直于平面,垂足为O,BC在平面内,AB与平面所成角的大小为,,,则异面直线AB与OC所成角的余弦值为()A. B.C. D.8.经过直线与直线的交点,且平行于直线的直线方程为()A. B.C. D.9.数列,,,,…的一个通项公式为()A. B.C. D.10.抛掷两枚硬币,若记出现“两个正面”“两个反面”“一正一反”的概率分别为,,,则下列判断中错误的是().A. B.C. D.11.已知椭圆经过点,当该椭圆的四个顶点构成的四边形的周长最小时,其标准方程为()A. B.C. D.12.若双曲线的一个焦点为,则的值为()A. B.C.1 D.二、填空题:本题共4小题,每小题5分,共20分。13.若圆的一条直径的端点是、,则此圆的方程是_______14.设是同一个半径为4的球的球面上四点,为等边三角形且其面积为,则三棱锥体积的最大值为___________.15.六面体的所有棱长都为2,底面ABCD是正方形,AC与BD的交点是O,若,则___________.16.定义在R上的函数满足,其中为自然对数的底数,,则满足的a的取值范围是__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数(1)解关于的不等式;(2)若不等式在上有解,求实数的取值范围18.(12分)在公差为的等差数列中,已知,且成等比数列.(Ⅰ)求;(Ⅱ)若,求.19.(12分)已知抛物线的焦点,点在抛物线上.(1)求;(2)过点向轴作垂线,垂足为,过点的直线与抛物线交于两点,证明:为直角三角形(为坐标原点).20.(12分)已知圆M:的圆心为M,圆N:的圆心为N,一动圆与圆N内切,与圆M外切,动圆的圆心E的轨迹为曲线C(1)求曲线C的方程;(2)已知点,直线l与曲线C交于A,B两点,且,直线l是否过定点?若过定点,求出定点坐标;若不过定点,请说明理由21.(12分)已知是椭圆的两个焦点,P为C上一点,O为坐标原点(1)若为等边三角形,求C的离心率;(2)如果存在点P,使得,且的面积等于16,求b的值和a的取值范围.22.(10分)已知抛物线y2=2px(p>0)的焦点为F,过F且与x轴垂直的直线交该抛物线于A,B两点,|AB|=4(1)求抛物线的方程;(2)过点F的直线l交抛物线于P,Q两点,若△OPQ的面积为4,求直线l的斜率(其中O为坐标原点)

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】利用条件概率公式进行求解.【详解】,其中表示:两次点数均为奇数,且两次点数之和为8,共有两种情况,即,故,而,所以,故选:B2、A【解析】利用导数与函数的单调性之间的关系及导数的几何意义即得.【详解】由函数f(x)的导函数y=f′(x)的图像自左至右是先减后增,可知函数y=f(x)图像的切线的斜率自左至右先减小后增大,且,在处的切线的斜率为0,故BCD错误,A正确.故选:A.3、D【解析】先由诱导公式及同角函数关系得到,再根据诱导公式化简,最后由二倍角公式化简求值即可.【详解】∵,∴,∵是第二象限角,∴,∴故选:D4、A【解析】先化简函数表达式,然后再平移即可.【详解】函数的图象向左平移个单位长度后,得到的图象.故选:A5、C【解析】根据渐近线方程设出双曲线方程,再由过点,可知双曲线方程,从而可求离心率.【详解】由题,设双曲线的方程为,又因为其过,且可知,不妨设,代入,得,所以双曲线的方程为,所以,同理可得双曲线的方程为,所以可得,所以,当时,结论依然成立.故选:C6、D【解析】利用空间角的意义结合空间向量求空间角的方法逐一分析各选项即可判断作答.【详解】对于A,因分别是直线的方向向量,且,直线所成的角为,则,A正确;对于B,D,因分别是直线l的方向向量与平面的法向量,且,直线l与平面所成的角为,则有,B正确,D错误;对于C,因分别是平面的法向量,且,平面所成的角为,则不大于,,C正确.故选:D7、B【解析】建立空间直角坐标系,求出相关点的坐标,求出向量的坐标,再利用向量的夹角公式计算即可.【详解】如图,以O为坐标原点,过点O作OB的垂线为x轴,OB为y轴,OA为z轴,建立空间直角坐标系,设,则,,则,,,,,设的夹角为,则,所以异面直线AB与OC所成角的余弦值为,故选:B.8、B【解析】求出两直线的交点坐标,可设所求直线的方程为,将交点坐标代入求得,即可的解.【详解】解:由,解得,即两直线的交点坐标为,设所求直线的方程为,则有,解得,所以所求直线方程为,即.故选:B.9、B【解析】根据给定数列,结合选项提供通项公式,将n代入验证法判断是否为通项公式.【详解】A:时,排除;B:数列,,,,…满足.C:时,排除;D:时,排除;故选:B10、A【解析】把抛掷两枚硬币的情况均列举出来,利用古典概型的计算公式,把,,算出来,判断四个选项的正误.【详解】两枚硬币,记为与,则抛掷两枚硬币,一共会出现的情况有四种,A正B正,A正B反,A反B正,A反B反,则,,,所以A错误,BCD正确故选:A11、A【解析】把点代入椭圆方程得,写出椭圆顶点坐标,计算四边形周长讨论它取最小值时的条件即得解.【详解】依题意得,椭圆的四个顶点为,顺次连接这四个点所得四边形为菱形,其周长为,,当且仅当,即时取“=”,由得a2=12,b2=4,所求标准方程为.故选:A【点睛】给定两个正数和(两个正数倒数和)为定值,求这两个正数倒数和(两个正数和)的最值问题,可借助基本不等式中“1”的妙用解答.12、B【解析】由题意可知双曲线的焦点在轴,从而可得,再列方程可求得结果【详解】因为双曲线的一个焦点为,所以,,所以,解得,故选:B二、填空题:本题共4小题,每小题5分,共20分。13、【解析】先设圆上任意一点的坐标,然后利用直径对应的圆周角为直角,再利用向量垂直建立方程即可【详解】设圆上任意一点的坐标为可得:,则有:,即解得:故答案为:14、【解析】求出等边的边长,画出图形,判断D的位置,然后求解即可.【详解】为等边三角形且其面积为,则,如图所示,设点M为的重心,E为AC中点,当点在平面上的射影为时,三棱锥的体积最大,此时,,点M为三角形ABC的重心,,中,有,,所以三棱锥体积的最大值故答案为:【点睛】思路点睛:本题考查球的内接多面体,棱锥的体积的求法,要求内接三棱锥体积的最大值,底面是面积一定的等边三角形,需要该三棱锥的高最大,故需要底面,再利用内接球,求出高,即可求出体积的最大值,考查学生的空间想象能力与数形结合思想,及运算能力,属于中档题.15、【解析】结合空间向量运算求得.【详解】,.所以.故答案为:16、【解析】设,求出其导数结合条件得出在上单调递减,将问题转化为求解,由的单调性可得答案.【详解】设,则由,则所以在上单调递减.又由,即,即,所以故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)当时,或;当时,;当时,或(2)【解析】(1)由题意得对的值进行分类讨论可得不等式的解集;(2)将条件转化为,,再利用基本不等式求最值可得的取值范围;【小问1详解】,即,所以,所以,①当时不等式的解为或,②当时不等式的解为,③当时不等式的解为或,综上:原不等式的解集为当时或,当时,当时或【小问2详解】不等式在上有解,即在上有解,所以在上有解,所以,因为,所以,当且仅当,即时取等号,所以.18、(Ⅰ)或(Ⅱ)【解析】(Ⅰ)由题意求得数列的公差后可得通项公式.(Ⅱ)结合条件可得,分和两种情况去掉中的绝对值后,利用数列的前n项和公式求解试题解析:(Ⅰ)∵成等比数列,∴,整理得,解得或,当时,;当时,所以或(Ⅱ)设数列前项和为,∵,∴,当时,,∴;当时,综上19、(1)(2)证明见解析【解析】(1)点代入即可得出抛物线方程,根据抛物线的定义即可求得.(2)由题,设直线的方程为:,与抛物线方程联立,可得,利用韦达定理证得即可得出结论.【小问1详解】点在抛物线上.,则,所以.【小问2详解】证明:由题,设直线的方程为:,点联立方程,消得:,由韦达定理有,由,所以,所以,所以,所以为直角三角形.20、(1),;(2)过,.【解析】(1)根据两圆内切和外切的性质,结合双曲线的定义进行求解即可;(2)设出直线l的方程与双曲线的方程联立,利用一元二次方程根与系数关系,结合平面向量数量积的坐标表示公式进行求解判断即可.【小问1详解】设圆E的圆心为,半径为r,则,,所以由双曲线定义可知,E的轨迹是以M,N为焦点、实轴长为6的双曲线的右支,所以动圆的圆心E的轨迹方程为,;【小问2详解】设,,直线l的方程为由得,且,故又,所以又,,所以,即.又故或若,则直线l的方程为,过点,与题意矛盾,所以,故,所以直线l的方程为,过点【点睛】关键点睛:利用一元二次方程根与系数的关系是解题的关键.21、(1);(2),a的取值范围为.【解析】(1)先连结,由为等边三角形,得到,,;再由椭圆定义,即可求出结果;(2)先由题意得到,满足条件的点存在,当且仅当,,,根据三个式子联立,结合题中条件,即可求出结果.【详解】(1)连结,由等边三角形可知:在中,,,,于是,故椭圆C的离心率为;(2)由题意可知,满足条件的点存在,当且仅当,,,即①②③由②③以及得,又由①知,故;由②③得,所以,从而,故;当,时,存在满足条件的点.故,a的取值范围为.【点睛】本题主要考查求椭圆的离心率,以及椭圆中存在定点满足题中条件的问题,熟记椭圆的简单性质即可求解,考查计算能力,属于中档试题.22、(1);(2).【解析】(1)根据抛物线的定义以及抛物线通径的性质可得,从而可得结果;(2)设直线的方程为,代入,得,利用弦长公式,结合韦达定理可得的值,由点到直线的距离公式,根据三角形面积公式可得,从而可得结果.【详解

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论