版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届黑龙江省牡东部地区四校联考高一上数学期末联考试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设则()A. B.C. D.2.已知函数则函数的零点个数为.A. B.C. D.3.若函数的值域为,则实数的取值范围是()A. B.C. D.4.设,给出下列四个结论:①;②;③;④.其中所有的正确结论的序号是A.①② B.②③C.①②③ D.②③④5.设,是两条不同的直线,是一个平面,则下列命题正确的是A.若,,则 B.若,,则C.若,,则 D.若,,则6.已知函数为上偶函数,且在上的单调递增,若,则满足的的取值范围是()A. B.C. D.7.若,则的值是()A. B.C. D.18.集合{|是小于4的正整数},,则如图阴影部分表示的集合为()A. B.C. D.9.已知,则直线ax+by+c=0与圆的位置关系是A.相交但不过圆心 B.相交且过圆心C.相切 D.相离10.若函数图象上所有点的横坐标向右平移个单位,纵坐标保持不变,得到的函数图象关于轴对称,则的最小值为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若函数在区间上是单调递增函数,则实数的取值范围是_______.12.在日常生活中,我们会看到如图所示的情境,两个人共提一个行李包.假设行李包所受重力为G,作用在行李包上的两个拉力分别为,,且,与的夹角为.给出以下结论:①越大越费力,越小越省力;②的范围为;③当时,;④当时,.其中正确结论的序号是______.13.在区间上随机取一个实数,则事件发生的概率为_________.14.若,,且,则的最小值为________15.已知,则的值为________16.正三棱锥P﹣ABC的底面边长为1,E,F,G,H分别是PA,AC,BC,PB的中点,四边形EFGH的面积为S,则S的取值范围是__三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知一扇形的圆心角为,所在圆的半径为.(1)若,求扇形的弧长及该弧所在的弓形的面积;(2)若扇形的周长是一定值,当为多少弧度时,该扇形有最大面积?18.已知函数,,且在上的最小值为0.(1)求的最小正周期及单调递增区间;(2)求的最大值以及取得最大值时x的取值集合.19.化简或求下列各式的值(1);(2)(lg5)2+lg5•lg20+20.已知函数(且),在上的最大值为.(1)求的值;(2)当函数在定义域内是增函数时,令,判断函数的奇偶性,并证明,并求出的值域.21.如图,正方体中,点,分别为棱,的中点.(1)证明:平面;(2)证明:平面.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】利用中间量隔开三个值即可.【详解】∵,∴,又,∴,故选:A【点睛】本题考查实数大小的比较,考查指对函数的性质,属于常考题型.2、B【解析】令,得,令,由,得或,作出函数的图象,结合函数的图象,即可求解【详解】由题意,令,得,令,由,得或,作出函数的图象,如图所示,结合函数的图象可知,有个解,有个解,故的零点个数为,故选B.【点睛】本题主要考查了函数的零点问题,其中令,由,得到或,作出函数的图象,结合函数的图象求解是解答的关键,着重考查了数形结合思想,以及推理与运算能力,属于基础题3、C【解析】因为函数的值域为,所以可以取到所有非负数,即的最小值非正.【详解】因为,且的值域为,所以,解得.故选:C.4、B【解析】因为,所以①为增函数,故=1,故错误②函数为减函数,故,所以正确③函数为增函数,故,故,故正确④函数为增函数,,故,故错误点睛:结合指数函数、对数函数、幂函数单调性可以逐一分析得出四个结论的真假性.5、B【解析】利用可能平行判断,利用线面平行的性质判断,利用或与异面判断,与可能平行、相交、异面,判断.【详解】,,则可能平行,错;,,由线面平行的性质可得,正确;,,则,与异面;错,,,与可能平行、相交、异面,错,.故选B.【点睛】本题主要考查线面平行的判定与性质、线面面垂直的性质,属于中档题.空间直线、平面平行或垂直等位置关系命题的真假判断,除了利用定理、公理、推理判断外,还常采用画图(尤其是画长方体)、现实实物判断法(如墙角、桌面等)、排除筛选法等;另外,若原命题不太容易判断真假,可以考虑它的逆否命题,判断它的逆否命题真假,原命题与逆否命题等价.6、B【解析】根据偶函数的性质和单调性解函数不等式【详解】是偶函数,.所以不等式化为,又在上递增,所以,或,即或故选:B7、D【解析】由求出a、b,表示出,进而求出的值.详解】由,.故选:D8、B【解析】先化简集合A,再判断阴影部分表示的集合为,求交集即得结果.【详解】依题意,,阴影部分表示的集合为.故选:B.9、A【解析】∵2a2+2b2=c2,∴a2+b2=.∴圆心(0,0)到直线ax+by+c=0的距离d=<2,∴直线ax+by+c=0与圆x2+y2=4相交,又∵点(0,0)不在直线ax+by+c=0上,故选A点睛:判断直线与圆的位置关系的常见方法(1)几何法:利用d与r的关系(2)代数法:联立方程之后利用Δ判断(3)点与圆的位置关系法:若直线恒过定点且定点在圆内,可判断直线与圆相交上述方法中最常用的是几何法,点与圆的位置关系法适用于动直线问题10、B【解析】由题设可得,根据已知对称性及余弦函数的性质可得,即可求的最小值.【详解】由题设,关于轴对称,∴且,则,,又,∴的最小值为.故选:B.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】先求出抛物线的对称轴方程,然后由题意可得,解不等式可求出的取值范围【详解】解:函数的对称轴方程为,因为函数在区间上是单调递增函数,所以,解得,故答案为:12、①④.【解析】根据为定值,求出,再对题目中的命题分析、判断正误即可.【详解】解:对于①,由为定值,所以,解得;由题意知时,单调递减,所以单调递增,即越大越费力,越小越省力;①正确.对于②,由题意知,的取值范围是,所以②错误.对于③,当时,,所以,③错误.对于④,当时,,所以,④正确.综上知,正确结论的序号是①④.故答案为:①④.【点睛】此题考查平面向量数量积的应用,考查分析问题的能力,属于中档题13、【解析】由得:,∵在区间上随机取实数,每个数被取到的可能性相等,∴事件发生的概率为,故答案为考点:几何概型14、4【解析】应用基本不等式“1”的代换求最小值即可,注意等号成立的条件.【详解】由题设,知:当且仅当时等号成立.故答案为:4.15、【解析】利用正弦、余弦、正切之间的商关系,分式的分子、分母同时除以即可求出分式的值.【详解】【点睛】本题考查了同角三角函数的平方和关系和商关系,考查了数学运算能力.16、(,+∞)【解析】由正三棱锥可得四边形EFGH为矩形,并可得其边长与三棱锥棱长关系,从而可得面积S的范围.【详解】∵棱锥P﹣ABC为底面边长为1的正三棱锥∴AB⊥PC又∵E,F,G,H,分别是PA,AC,BC,PD的中点,∴EH//FG//AB且EH=FGAB,EF//HG//PC且EF=HGPC则四边形EFGH为一个矩形又∵PC,∴EF,∴S=EFEH,∴四边形EFGH的面积S的取值范围是(,+∞),故答案为:(,+∞)三、三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)见解析【解析】(1)根据弧长的公式和扇形的面积公式即可求扇形的弧长及该弧所在的弓形的面积;(2)根据扇形的面积公式,结合基本不等式即可得到结论【详解】(1)设弧长为l,弓形面积为S弓,则α=90°=,R=10,l=×10=5π(cm),S弓=S扇-S△=×5π×10-×102=25π-50(cm2).(2)扇形周长C=2R+l=2R+αR,∴R=,∴S扇=α·R2=α·=·=·≤.当且仅当α2=4,即α=2时,扇形面积有最大值.【点睛】本题主要考查扇形的弧长和扇形面积的计算,要求熟练掌握相应的公式,考查学生的计算能力18、(1)最小正周期为,(2)3,【解析】(1)直接利用周期公式可求出周期,由可求出增区间,(2)由得,从而可求出最小值,则可求出的值,进而可求出函数解析式,则可求出最大值以及取得最大值时x的取值集合【小问1详解】的最小正周期为.令,,解得,.所以的单调递增区间为.【小问2详解】当时,.,解得.所以.当,,即,时,取得最大值,且最大值为3.故的最大值为3,取得最大值时x的取值集合为19、(1);(2)2【解析】(1)进行分数指数幂的运算即可;(2)进行对数的运算即可【详解】(1)原式=;(2)原式=lg5(lg5+lg20)+lg4=2(lg5+lg2)=2【点睛】本题主要考查分数指数幂和对数的运算,考查对数的换底公式.意在考查学生对这些知识的理解掌握水平和计算能力.20、(1)或(2)为偶函数,证明见解析,.【解析】(1)分别在和时,根据函数单调性,利用最大值可求得;(2)由(1)可得,根据奇偶性定义判断可知其为偶函数;利用对数型复合函数值域的求解方法可求得值域.【小问1详解】当时,为增函数,,解得:;当时,为减函数,,解得:
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 初级会计职称考试会计实务练习题及答案
- 油气计量考试试题及答案
- vivo校招面试题及答案
- 单招畜牧考试题目及答案
- 成都九上语文试题及答案
- 2026黑龙江哈尔滨启航劳务派遣有限公司派遣至哈尔滨工业大学国际教育学院招聘10人备考题库附答案
- 中共南部县委组织部关于2025年南部县党政机关公开考调工作人员的(16人)备考题库必考题
- 中国雄安集团有限公司2026校园招聘备考题库附答案
- 北京市大兴区审计局招聘临时辅助用工1人考试备考题库附答案
- 南充市司法局2025年下半年公开遴选公务员(参公人员)公 告(2人)参考题库必考题
- 《开学第一课:龙马精神·梦想起航》课件 2025-2026学年统编版语文七年级下册
- 2026年洪湖市事业单位人才引进100人参考考试题库及答案解析
- 北京市海淀区2025一2026学年度第一学期期末统一检测历史(含答案)
- 小拇指培训课件
- 紧急护理人力资源应急资源储备
- GB/T 22182-2025油菜籽叶绿素含量的测定分光光度计法
- 2026吉林长春汽车经济技术开发区招聘编制外辅助岗位人员69人考试备考试题及答案解析
- 2024年基层社会治理专题党课
- 消防培训案例课件
- 2026年科研仪器预约使用平台服务协议
- 2025年度精神科护士述职报告
评论
0/150
提交评论