版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届安徽省六安市三校高一数学第一学期期末达标检测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.由一个正方体截去一个三棱锥所得的几何体的直观图如图所示,则该几何体的三视图正确的是()A.B.C.D.2.已知函数,则在上的最大值与最小值之和为()A. B.C. D.3.已知幂函数的图象过点,则该函数的解析式为()A. B.C. D.4.已知点P(1,a)在角α的终边上,tan=-则实数a的值是()A.2 B.C.-2 D.-5.设直三棱柱ABC-A1B1C1的体积为V,点P、Q分别在侧棱AA1、CC1上,且PA=QC1,则四棱锥B-APQC的体积为()A. B.C. D.6.函数,则下列坐标表示的点一定在函数图像上的是A. B.C. D.7.已知圆方程为,过该圆内一点的最长弦和最短弦分别为AC和BD,则四边形ABCD的面积是()A.4 B.C.6 D.8.如图,四面体ABCD中,CD=4,AB=2,F分别是AC,BD的中点,若EF⊥AB,则EF与CD所成的角的大小是()A.30° B.45°C.60° D.90°9.垂直于直线且与圆相切的直线的方程是AB.C.D.10.设是两条不同的直线,是两个不同的平面,且,则下列说法正确的是()A.若,则 B.若,则C.若,则 D.若,则二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数,则的值是()A. B. C. D.12.已知长方体的8个顶点都在球的球面上,若,,,则球的表面积为___________.13.函数的定义域为_________14.将函数的图象先向右平移个单位长度,得到函数________________的图象,再把图象上各点横坐标缩短到原来的(纵坐标不变),得到函数________________的图象15.已知函数.(1)若在上单调递减,则实数的取值范围是___________;(2)若的值域是,则实数的取值范围是___________.16.已知集合,,则=______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数(1)求的最小正周期;(2)当时,求的最小值以及取得最小值时的集合18.已知.(1)化简;(2)若是第三象限角,且,求的值.19.已知OPQ是半径为1,圆心角为2θ(θ为定值)的扇形,A是扇形弧上的动点,四边形ABCD是扇形内的内接矩形,记∠AOP=(0<<θ)(1)用表示矩形ABCD的面积S;(2)若θ=,求当取何值时,矩形面积S最大?并求出这个最大面积20.已知函数.(1)若为偶函数,求实数m的值;(2)当时,若不等式对任意恒成立,求实数a的取值范围;(3)当时,关于x的方程在区间上恰有两个不同的实数解,求实数m的取值范围.21.已知关于x的不等式:a(1)当a=-2时,解此不等式;(2)当a>0时,解此不等式
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】因为有直观图可知,该几何体的正视图是有一条从左上角到右下角的对角线的正方形,俯视图是有一条从左下角角到右上角角的对角线的正方形,侧视图是有一条从左上角到右下角的对角线的正方形(对角线为虚线),所以只有选项D合题意,故选D.2、D【解析】首先利用两角和与差的正弦公式将函数化简为,当时,,由正弦型函数的单调性即可求出最值.【详解】当时,,所以最大值与最小值之和为:.故选:D【点睛】本题考查两角和与差的正弦公式,正弦型函数的单调性与最值,属于基础题.3、C【解析】设出幂函数的解析式,根据点求得解析式.【详解】设,依题意,所以.故选:C4、C【解析】利用两角和的正切公式得到关于tanα的值,进而结合正切函数的定义求得a的值.【详解】∵,∴tanα=-2,∵点P(1,a)在角α的终边上,∴tanα==a,∴a=-2.故选:C.5、C【解析】为直三棱柱,且,.故C正确考点:棱锥的体积6、D【解析】因为函数,,所以,所以函数为偶函数,则、均在在函数图像上.故选D考点:函数的奇偶性7、C【解析】由圆的方程可知圆心为,半径,则过圆内一点的最长弦为直径,最短弦为该点与圆心连线的垂线段,进而求解即可【详解】由题,圆心为,半径,过圆内一点的最长弦为直径,故;当时,弦长最短,因为,所以,因为在直径上,所以,所以四边形ABCD的面积是,故选:C【点睛】本题考查过圆内一点弦长的最值问题,考查两点间距离公式的应用,考查数形结合思想8、A【解析】取BC的中点G,连结FG,EG.先证明出(或其补角)即为EF与CD所成的角.在直角三角形△EFG中,利用正弦的定义即可求出的大小.【详解】取BC的中点G,连结FG,EG.由三角形中位线定理可得:AB∥EG,CD∥FG.所以(或其补角)即为EF与CD所成的角.因为EF⊥AB,则EF⊥EG.因为CD=4,AB=2,所以EG=1,FG=2,则△EFG是一个斜边FG=2,一条直角边EG=1的直角三角形,所以,因为为锐角,所以,即EF与CD所成的角为30°.故选:A9、B【解析】设所求直线方程为3x+y+c=0,则d=,解得d=±10.所以所求直线方程为3x+y+10=0或3x+y-10=0.10、D【解析】若,则需使得平面内有直线平行于直线;若,则需使得,由此为依据进行判断即可【详解】当时,可确定平面,当时,因为,所以,所以;当平面交平面于直线时,因为,所以,则,因为,所以,因为,所以,故A错误,D正确;当时,需使得,选项B、C中均缺少判断条件,故B、C错误;故选:D【点睛】本题考查空间中直线、平面的平行关系与垂直关系的判定,考查空间想象能力二、填空题:本大题共6小题,每小题5分,共30分。11、B【解析】分段函数求值,根据自变量所在区间代相应的对应关系即可求解【详解】函数那么可知,故选:B12、【解析】求得长方体外接球的半径,从而求得球的表面积.【详解】由题知,球O的半径为,则球O的表面积为故答案为:13、【解析】根据被开放式大于等于零和对数有意义,解对数不等式得到结果即可.【详解】∵函数∴x>0且,∴∴函数的定义域为故答案为【点睛】本题考查了根据函数的解析式求定义域的应用问题,是基础题目14、①.②.【解析】根据三角函数的图象变换可得变换后函数的解析式.【详解】由三角函数的图象变换可知,函数的图象先向右平移可得,再把图象上各点横坐标缩短到原来的(纵坐标不变)可得,故答案为:;15、①.②.【解析】(1)分析可知内层函数在上为减函数,且对任意的,恒成立,由此可得出关于实数的不等式组,由此可解得实数的取值范围;(2)分析可知为二次函数值域的子集,分、两种情况讨论,可得出关于实数的不等式组,综合可得出实数的取值范围.【详解】(1)令,.当时,,该函数为常值函数,不合乎题意.所以,,内层函数的对称轴为直线,由于函数在上单调递减,且外层函数为增函数,故内层函数在上为减函数,且对任意的,恒成立,所以,,解得;(2)因为函数的值域是,则为二次函数值域的子集.当时,内层函数为,不合乎题意;当时,则有,解得.综上所述,实数的取值范围是.故答案为:(1);(2).16、{-1,1,2};【解析】=={-1,1,2}三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),(2),时【解析】(1)先利用同角平方关系及二倍角公式,辅助角公式进行化简,即可求解;(2)由的范围先求出的范围,结合余弦函数的性质即可求解【详解】解:(1),,,,故的最小正周期;(2)由可得,,当得即时,函数取得最小值.所以,时18、(1);(2).【解析】(1)根据诱导公式化简即可得答案;(2)根据诱导公式,结合已知条件得,再根据同角三角函数关系求值即可.【详解】(1).(2)∵,∴,又是第三象限角,∴,故.【点睛】本题考查诱导公式化简求值,考查运算能力,基础题.19、(1)S=(0<<θ);(2)当α=时,S取得最大值为2﹣【解析】(1)由题意可求得∠ADO,△COD为等腰三角形,在△OAD中利用正弦定理求出AD,从而可用表示矩形ABCD的面积S;(2)由(1)可得,然后由的范围结合正弦函数的性质可求出其最大值【详解】解:(1)由题意可得AD∥OE∥CB,∴∠POE=∠PDA=θ,∴∠ODC==∠DCO,∠BOA=2θ﹣2,△COD为等腰三角形故AB=2sin(θ﹣),再由∠ADO==π﹣θ,△OAD中,利用正弦定理可得,化简可得AD=故矩形ABCD的面积S=f()=AB•AD=(0<<θ)(2)θ=,由(1)可得S=f()===再由0<<可得<2+<,故当2+=,即当=时,S=f()取得最大值为2﹣20、(1)-1;(2);(3)【解析】(1)根据偶函数解得:m=-1,再用定义法进行证明;(2)记,判断出在上单增,列不等式组求出实数a的取值范围;(3)先判断出在R上单增且,令,把问题转化为在上有两根,令,,利用图像有两个交点,列不等式求出实数m的取值范围.【小问1详解】定义域为R.因为为偶函数,所以,即,解得:m=-1.此时,所以所以偶函数,所以m=-1.【小问2详解】当时,不等式可化为:,即对任意恒成立.记,只需.因为在上单增,在上单增,所以在上单增,所以,所以,解得:,即实数a的取值范围为.【小问3详解】当时,在R上单增,在R上单增,所以在R上单增且.则可化为.又因为在R上单增,所以,换底得:,即.令,则,问题转化为在上有两根,即,令,,分别作出图像如图所示:只需,解得:.即实数m的取值范围为.【点睛】已知函数有零点(方程有根)求参数值(取值范围)常用的方法:(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解21、(1){x|x<-12(2)当a=13时,解集为∅;当0<a<13时,解集为{x|3<x<【解析】(1)利用一元二次不等式的解法解出即可;(2)不等式可变形为(x-3)(x-1a)<0,然后分a=13、0<a<
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 教育学教育心理学常考试题及答案l
- 玉林市博白县辅警考试题《公安基础知识》综合能力试题库附答案
- 高频数据的面试题及答案
- 中医妇产科试题及答案
- 2025医院感染知识试题题库(有参考答案)
- 高频煤炭地质勘探队面试题及答案
- 金属非金属矿井通风作业考试题库试卷附答案
- 二建法规历年真题答案及解析
- 《安全生产法》考试试题及答案
- (完整版)安全生产法律法规安全知识试题答案
- 临床提高吸入剂使用正确率品管圈成果汇报
- 娱乐场所安全管理规定与措施
- GB/T 45701-2025校园配餐服务企业管理指南
- 电影项目可行性分析报告(模板参考范文)
- 老年协会会员管理制度
- LLJ-4A车轮第四种检查器
- 大索道竣工结算决算复审报告审核报告模板
- 2025年南充市中考理科综合试卷真题(含标准答案)
- JG/T 3049-1998建筑室内用腻予
- 人卫基础护理学第七版试题及答案
- 烟草物流寄递管理制度
评论
0/150
提交评论