版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
云南省凤庆二中2026届高一数学第一学期期末经典模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知直线是函数图象的一条对称轴,的最小正周期不小于,则的一个单调递增区间为()A. B.C. D.2.若,则的最小值为()A. B.C. D.3.已知函数f(x)=有两不同的零点,则的取值范围是()A.(−∞,0) B.(0,+∞)C.(−1,0) D.(0,1)4.已知定义域为的函数满足:,且,当时,,则等于A. B.C.2 D.45.设向量,,,则A. B.C. D.6.若函数y=|x|(x-1)的图象与直线y=2(x-t)有且只有2个公共点,则实数t的所有取值之和为()A.2 B.C.1 D.7.若,则()A B.C. D.8.棱长为1的正方体可以在一个棱长为的正四面体的内部任意地转动,则的最小值为A. B.C. D.9.已知函数在区间上单调递增,则实数a的取值范围为()A. B.C. D.10.已知函数若函数有四个零点,零点从小到大依次为则的值为()A.2 B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.在平面直角坐标系xOy中,已知圆有且仅有三个点到直线l:的距离为1,则实数c的取值集合是______12.在《九章算术》中,将四个面都为直角三角形的三棱锥称之为鳖臑(bienao).已知在鳖臑中,平面,,则该鳖臑的外接球与内切球的表面积之和为____13.若是幂函数且在单调递增,则实数_______.14.已知,,,则有最大值为__________15.设,,则______16.对于定义在区间上的两个函数和,如果对任意的,均有不等式成立,则称函数与在上是“友好”的,否则称为“不友好”的(1)若,,则与在区间上是否“友好”;(2)现在有两个函数与,给定区间①若与在区间上都有意义,求的取值范围;②讨论函数与与在区间上是否“友好”三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.记.(1)化简;(2)若为第二象限角,且,求的值.18.已知函数.(1)判断函数f(x)的单调性并给出证明;(2)若存在实数a使函数f(x)是奇函数,求a;(3)对于(2)中的a,若,当x∈[2,3]时恒成立,求m的最大值19.在①函数;②函数;③函数的图象向右平移个单位长度得到的图象,的图象关于原点对称;这三个条件中任选一个作为已知条件,补充在下面的问题中,然后解答补充完整的题已知______(只需填序号),函数的图象相邻两条对称轴之间的距离为.(1)求函数的解析式;(2)求函数的单调递减区间及其在上的最值注:若选择多个条件分别解答,则按第一个解答计分.20.已知集合,,(1)求;(2)若,求m的取值范围21.如图所示的几何体中,四边形ABCD是等腰梯形,AB//CD,,若(1)求证:(2)求三棱锥的体积.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】由周期得出的范围,再由对称轴方程求得值,然后由正弦函数性质确定单调性【详解】根据题意,,所以,,,所以,,故,所以.令,,得,.令,得的一个单调递增区间为.故选:B2、B【解析】由,根据基本不等式,即可求出结果.【详解】因为,所以,,因此,当且仅当,即时,等号成立.故选:B.3、A【解析】函数f(x)=有两不同的零点,可以转化为直线与函数的图象有两个不同的交点,构造不等式即可求得的取值范围.【详解】由题可知方程有两个不同的实数根,则直线与函数的图象有两个不同的交点,作出与的大致图象如下:不妨设,由图可知,,整理得,由基本不等式得,(当且仅当时等号成立)又,所以,解得,故选:A4、D【解析】由得,又由得函数为偶函数,所以选D5、A【解析】,由此可推出【详解】解:∵,,,∴,,,,故选:A【点睛】本题主要考查平面向量垂直的坐标表示,考查平面向量的模,属于基础题6、C【解析】可直接根据题意转化为方程有两个根,然后利用分类讨论思想去掉绝对值再利用判别式即可求得各个t的值【详解】由题意得方程有两个不等实根,当方程有两个非负根时,令时,则方程为,整理得,解得;当时,,解得,故不满足满足题意;当方程有一个正跟一个负根时,当时,,,解得,当时,方程为,,解得;当方程有两个负根时,令,则方程为,解得,当,,解得,不满足题意综上,t的取值为和,因此t的所有取值之和为1,故选C【点睛】本题是在二次函数的基础上加了绝对值,所以首先需解决绝对值,关于去绝对值直接用分类讨论思想即可;关于二次函数根的分布需结合对称轴,判别式,进而判断,必要时可结合进行判断7、C【解析】将式子先利用二倍角公式和平方关系配方化简,然后增添分母(),进行齐次化处理,化为正切的表达式,代入即可得到结果【详解】将式子进行齐次化处理得:故选:C【点睛】易错点睛:本题如果利用,求出的值,可能还需要分象限讨论其正负,通过齐次化处理,可以避开了这一讨论8、A【解析】由题意可知正方体的外接球为正四面体的内切球时a最小,此时R=,.9、D【解析】根据二次函数的单调性进行求解即可.【详解】当时,函数是实数集上的减函数,不符合题意;当时,二次函数的对称轴为:,由题意有解得故选:D10、C【解析】函数有四个零点,即与图象有4个不同交点,可设四个交点横坐标满足,由图象,结合对数函数的性质,进一步求得,利用对称性得到,从而可得结果.【详解】作出函数的图象如图,函数有四个零点,即与的图象有4个不同交点,不妨设四个交点横坐标满足,则,,,可得,由,得,则,可得,即,,故选C.【点睛】函数的性质问题以及函数零点问题是高考的高频考点,考生需要对初高中阶段学习的十几种初等函数的单调性、奇偶性、周期性以及对称性非常熟悉;另外,函数零点的几种等价形式:函数的零点函数在轴的交点方程的根函数与的交点.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】因为圆心到直线的距离为,所以由题意得考点:点到直线距离12、【解析】M﹣ABC四个面都为直角三角形,MA⊥平面ABC,MA=AB=BC=2,∴三角形的AC=2,从而可得MC=2,那么ABC内接球的半径r:可得(﹣r)2=r2+(2﹣)2解得:r=2-∵△ABC时等腰直角三角形,∴外接圆半径为AC=外接球的球心到平面ABC的距离为=1可得外接球的半径R=故得:外接球表面积为.由已知,设内切球半径为,,,内切球表面积为,外接球与内切球的表面积之和为故答案为:.点睛:本题考查了球与几何体的问题,一般外接球需要求球心和半径,首先应确定球心的位置,借助于外接球的性质,球心到各顶点距离相等,这样可先确定几何体中部分点组成的多边形的外接圆的圆心,过圆心且垂直于多边形所在平面的直线上任一点到多边形的顶点的距离相等,然后同样的方法找到另一个多边形的各顶点距离相等的直线,这样两条直线的交点,就是其外接球的球心.13、2【解析】由幂函数可得,解得或2,检验函数单调性求解即可.【详解】为幂函数,所以,解得或2.当时,,在不单调递增,舍去;当时,,在单调递增成立.故答案为.【点睛】本题主要考查了幂函数的定义及单调性,属于基础题.14、4【解析】分析:直接利用基本不等式求xy的最大值.详解:因为x+y=4,所以4≥,所以故答案为4.点睛:(1)本题主要考查基本不等式,意在考查学生对该基础知识的掌握水平.(2)利用基本不等式求最值时,一定要注意“一正二定三相等”,三者缺一不可.15、【解析】由,根据两角差的正切公式可解得【详解】,故答案为【点睛】本题主要考查了两角差的正切公式的应用,属于基础知识的考查16、(1)是;(2)①;②见解析【解析】(1)按照定义,只需判断在区间上是否恒成立;(2)①由题意解不等式组即可;②假设存在实数,使得与与在区间上是“友好”的,即,即,只需求出函数在区间上的最值,解不等式组即可.【详解】(1)由已知,,因为时,,所以恒成立,故与在区间上是“友好”的.(2)①与在区间上都有意义,则必须满足,解得,又且,所以的取值范围为.②假设存在实数,使得与与在区间上是“友好”的,则,即,因为,则,,所以在的右侧,又复合函数的单调性可得在区间上为减函数,从而,,所以,解得,所以当时,与与在区间上是“友好”的;当时,与与在区间上是“不友好”的.【点睛】本题考查函数的新定义问题,主要涉及到不等式恒成立的问题,考查学生转化与化归的思想、数学运算求解能力,是一道有一定难度的题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2).【解析】(1)直接利用诱导公式化简即可;(2)由求出,代入即可求解.【详解】(1)(2)因为为第二象限角,且,所以,所以.18、(1)单调递增(2)见解析【解析】(1)根据单调性定义:先设再作差,变形化为因子形式,根据指数函数单调性确定因子符号,最后根据差的符号确定单调性(2)根据定义域为R且奇函数定义得f(0)=0,解得a=1,再根据奇函数定义进行验证(3)先根据参变分离将不等式恒成立化为对应函数最值问题:的最小值,再利用对勾函数性质得最小值,即得的范围以及的最大值试题解析:解:(1)不论a为何实数,f(x)在定义域上单调递增.证明:设x1,x2∈R,且x1<x2,则由可知,所以,所以所以由定义可知,不论为何值,在定义域上单调递增(2)由f(0)=a-1=0得a=1,经验证,当a=1时,f(x)是奇函数.(3)由条件可得:m2x=(2x+1)+-3恒成立.m(2x+1)+-3的最小值,x∈[2,3].设t=2x+1,则t∈[5,9],函数g(t)=t+-3在[5,9]上单调递增,所以g(t)的最小值是g(5)=,所以m,即m的最大值是.19、(1)条件选择见解析,(2)单调递减区间为,最小值为,最大值为2【解析】(1)选条件①:利用同角三角函数的关系式以及两角和的正弦公式和倍角公式,将化为只含一个三角函数形式,根据最小正周期求得,即可得答案;选条件②:利用两角和的正弦公式以及倍角公式,将化为只含一个三角函数形式,根据最小正周期求得,即可得答案;选条件③,先求得,利用三角函数图象的平移变换规律,可得到g(x)的表达式,根据其性质求得,即得答案;(2)根据正弦函数的单调性即可求得答案,再由,确定,根据三角函数性质即可求得答案.【小问1详解】选条件①:法一:又由函数的图象相邻两条对称轴之间的距离为,可知函数最小正周期,∴,∴选条件②:,又最小正周期,∴,∴选条件③:由题意可知,最小正周期,∴,∴,∴,又函数的图象关于原点对称,∴,∵,∴∴【小问2详解】由(1)知,由,解得,∴函数单调递减区间为由,从而,故在区间上的最小值为,最大值为2.20、(1)(2)【解析】(1)先求得集合A,再由集合的补集运算和交集运算可求得答案;(2)根据条件建立不等式组,可求得所求范围.【小问1详解】因为,,所以,【小问2详解】因为,所以解得.故m的取值范围是21、(Ⅰ)证明见解析;(Ⅱ)【解析】(Ⅰ)在等腰梯形中,易得,即又由已知,可得平面,利用面面垂直判定定理可得平面平面.(Ⅱ)求三棱锥的体积,关键是求三棱锥的高,如果不好求,可以换底,本题这样容易求出三棱锥的体积为试题解析:证明:(Ⅰ)在等腰梯形中,∵,∴又∵,∴,∴,即又∵,∴平面,又∵平面,∴平面平面(Ⅱ)∵∵平面,且,∴,∴三棱锥的体积为考点:线面垂直及求三棱锥体积【方法点睛】(1)证明面面垂直常用面面垂直的判
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 麻醉科规培试题及答案
- 新三板题库及答案
- 儿科基础护理知识试题及答案
- 机构考试题及答案
- 医学影像技术模考试题(附参考答案)
- 一级蚂蚁知识竞赛题及答案
- 结构与设计试题及答案
- 2025年医院感染考试试题及参考答案
- 《急危重症护理学》试题及参考答案03
- 2025年交管12123学法减分试题题库含答案真题版
- 电子商务毕业论文5000
- 2025-2026学年人教版(2024)初中生物八年级上册教学计划及进度表
- 医疗卫生舆情课件模板
- 高压注浆施工方案(3篇)
- 高强混凝土知识培训课件
- (高清版)DB11∕T 1455-2025 电动汽车充电基础设施规划设计标准
- 暖通工程施工环保措施
- 宗族团年活动方案
- 2025至2030中国碳纳米管行业市场发展分析及风险与对策报告
- 车企核心用户(KOC)分层运营指南
- 儿童课件小学生讲绘本成语故事《69狐假虎威》课件
评论
0/150
提交评论