版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届江苏省南通市数学高一上期末综合测试模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.中国的5G技术领先世界,5G技术的数学原理之一便是著名的香农公式:.它表示:在受噪声干扰的信道中,最大信息传递速度取决于信道带宽,信道内信号的平均功率,信道内部的高斯噪声功率的大小,其中叫做信噪比.当信噪比比较大时,公式中真数中的1可以忽略不计.按照香农公式,若不改变带宽,而将信噪比从1000提升至4000,则大约增加了()附:A.10% B.20%C.50% D.100%2.函数的定义域是()A.(-2,] B.(-2,)C.(-2,+∞) D.(,+∞)3.已知正实数x,y,z,满足,则()A. B.C. D.4.下列关于函数,的单调性叙述正确的是()A.在上单调递增,在上单调递减B.在上单调递增,在上单调递减C.在及上单调递增,在上单调递减D.在上单调递增,在及上单调递减5.在四面体中,已知棱的长为,其余各棱长都为1,则二面角的平面角的余弦值为()A. B.C. D.6.已知定义在R上的函数,(e为自然对数的底数,),则()A.3 B.6C.3e D.与实数m的取值有关7.在底面为正方形的四棱锥中,侧面底面,,,则异面直线与所成的角为()A. B.C. D.8.已知,且,则下列不等式恒成立的是()A. B.C. D.9.已知函数,则下列说法不正确的是A.的最小正周期是 B.在上单调递增C.是奇函数 D.的对称中心是10.已知函数的图象与直线有三个不同的交点,则的取值范围是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若角的终边经过点,则___________12.已知向量,,若,则与的夹角为______13.若函数满足,则______14.我国古代数学名著《九章算术》中相当于给出了已知球的体积V,求其直径d的一个近似公式.规定:“一个近似数与它准确数的差的绝对值叫这个近似数的绝对误差.”如果一个球体的体积为,那么用这个公式所求的直径d结果的绝对误差是___________.(参考数据:,结果精确到0.01)15.若函数满足:对任意实数,有且,当时,,则时,________16.不等式的解集为,则的取值范围是_________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在中,已知为线段的中点,顶点,的坐标分别为,.(Ⅰ)求线段的垂直平分线方程;(Ⅱ)若顶点的坐标为,求垂心的坐标.18.计划建造一个室内面积为1500平方米的矩形温室大棚,并在温室大棚内建两个大小、形状完全相同的矩形养殖池,其中沿温室大棚前、后、左、右内墙各保留米宽的通道,两养殖池之间保留2米宽的通道.设温室的一边长度为米,两个养殖池的总面积为平方米,如图所示:(1)将表示为的函数,并写出定义域;(2)当取何值时,取最大值?最大值是多少?19.已知定义在上的函数是奇函数(1)求实数;(2)若不等式恒成立,求实数的取值范围20.已知两点,,两直线:,:求:(1)过点且与直线平行的直线方程;(2)过线段的中点以及直线与的交点的直线方程21.若二次函数满足,且.(1)求的解析式;(2)若在区间上,不等式恒成立,求实数的取值范围.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】根据题意,计算出值即可;【详解】当时,,当时,,因为所以将信噪比从1000提升至4000,则大约增加了20%,故选:B.【点睛】本题考查对数的运算,考查运算求解能力,求解时注意对数运算法则的运用.2、B【解析】由分母中根式内部的代数式大于0,对数式的真数大于0联立不等式组求解【详解】解:由,解得函数的定义域是故选:B【点睛】本题考查函数的定义域及其求法,属于基础题3、A【解析】根据指数函数和对数函数的图像比较大小即可.【详解】令,则,,,由图可知.4、C【解析】先求出函数的一般性单调区间,再结合选项判断即可.【详解】的单调增区间满足:,即,所以其单调增区间为:,同理可得其单调减区间为:.由于,令中的,有,,所以在上的增区间为及.令中的,有,所以在上的减区间为.故选:C5、C【解析】由已知可得AD⊥DC又由其余各棱长都为1得正三角形BCD,取CD得中点E,连BE,则BE⊥CD在平面ADC中,过E作AD的平行线交AC于点F,则∠BEF为二面角A﹣CD﹣B的平面角∵EF=(三角形ACD的中位线),BE=(正三角形BCD的高),BF=(等腰RT三角形ABC,F是斜边中点)∴cos∠BEF=故选C.6、B【解析】可证,从而可得正确的选项.【详解】因为,故,故,故选:B7、C【解析】由已知可得PA⊥平面ABCD,底面ABCD为正方形,分别过P,D点作AD,AP的平行线交于M,连接CM,AM,因为PB∥CM,所以ACM就是异面直线PB与AC所成的角,再求解即可.【详解】由题意:底面ABCD为正方形,侧面底面,,面面,PA⊥平面ABCD,分别过P,D点作AD,AP的平行线交于M,连接CM,AM,∵PM∥AD,AD∥BC,PM=AD,AD=BC∴PBCM是平行四边形,∴PB∥CM,所以∠ACM就是异面直线PB与AC所成的角设PA=AB=a,在三角形ACM中,,∴三角形ACM是等边三角形所以∠ACM等于60°,即异面直线PB与AC所成的角为60°故选:C.【点睛】思路点睛:先利用面面垂直得到PA⊥平面ABCD,分别过P,D点作AD,AP的平行线交于M,连接CM,AM,得到∠ACM就是异面直线PB与AC所成的角8、D【解析】对A,C利用特殊值即可判断;对B,由对数函数的定义域即可判断,对D,由指数函数的单调性即可判断.【详解】解:对A,令,,则满足,但,故A错误;对B,若使,则需满足,但题中,故B错误;对C,同样令,,则满足,但,故C错误;对D,在上单调递增,当时,,故D正确.故选:D.9、A【解析】对进行研究,求出其最小正周期,单调区间,奇偶性和对称中心,从而得到答案.【详解】,最小正周期为;单调增区间为,即,故时,在上单调递增;定义域关于原点对称,,故为奇函数;对称中心横坐标为,即,所以对称中心为【点睛】本题考查了正切型函数的最小正周期,单调区间,奇偶性和对称中心,属于简单题.10、D【解析】作出函数的图象,结合图象即可求出的取值范围.【详解】作函数和的图象,如图所示,可知的取值范围是,故选D.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】根据定义求得,再由诱导公式可求解.【详解】角的终边经过点,则,所以.故答案为:.12、##【解析】先求向量的模,根据向量积,即可求夹角.【详解】解:,,所以与的夹角为.故答案为:13、【解析】根据题意,令,结合指数幂的运算,即可求解.【详解】由题意,函数满足,令,可得.故答案为:.14、05【解析】根据球的体积公式可求得准确直径,由近似公式可得近似直径,然后由绝对误差的定义即可求解.【详解】解:由题意,,所以,所以直径d结果的绝对误差是,故答案为:0.05.15、【解析】由,可知.所以函数是周期为4的周期函数.,时,..对任意实数,有,可知函数关于点(1,0)中心对称,所以,又.所以.综上可知,时,.故答案为.点睛:抽象函数的周期性:(1)若,则函数周期为T;(2)若,则函数周期为(3)若,则函数的周期为;(4)若,则函数的周期为.16、[0,1)##0≤k<1【解析】分k=0和k≠0两种情况进行讨论.k≠0时,可看为函数恒成立,结合二次函数的图像性质即可求解.【详解】①当时,不等式可化为1>0,此时不等式的解集为,符合题意;②当时,要使得不等式的解集为,则满足,解得;综上可得,实数的取值范围是.故答案:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(Ⅰ);(Ⅱ).【解析】(1)根据中点坐标公式求中点坐标,根据斜率公式求斜率,最后根据点斜式求方程(2)根据垂心为高线的交点,先根据点斜式求两条高线方程,再解方程组求交点坐标,即得垂心的坐标.试题解析:(Ⅰ)∵的中点是,直线的斜率是-3,线段中垂线的斜率是,故线段的垂直平分线方程是,即;(Ⅱ)∵,∴边上的高所在线斜率∵∴边上高所在直线的方程:,即同理∴边上的高所在直线的方程:联立和,得:,∴的垂心为18、(1),定义域为;(2)当取30时,取最大值,最大值是1215.【解析】(1)应用矩形的面积公式写出表示为的函数,并写出定义域.(2)利用基本不等式求的最大值,并确定对应值.【小问1详解】依题意得:温室的另一边长为米,则养殖池的总面积,因为,解得∴定义域为【小问2详解】由(1),,又,所以,当且仅当,即时上式等号成立,所以.当时,.当x为30时,y取最大值为1215.19、(1)1(2)【解析】(1)根据奇函数的性质,,求参数后,并验证;(2)结合函数单调性和奇函数的性质,不等式变形得恒成立,再根据判别式求实数的取值范围【小问1详解】∵是定义域为的奇函数,∴,∴,则,满足,所以成立.【小问2详解】中,函数单调递减,单调递增,故在上单调递增原不等式化为,∴即恒成立,∴,解得20、(1)(2)【解析】【试题分析】(1)设所求直线方程为:,将点坐标代入,求得的值,即得所求.(2)求得中点坐标和直线交点的坐标,利用点斜
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年上半年四川中医药高等专科学校第一批编外教职工招聘7人备考题库及答案详解参考
- 2025四川成都成华城市建设投资有限责任公司下属公司招聘3人备考题库及答案详解(新)
- 复合材料力学
- 2026广东江门市高新技术工业园集团有限公司招聘4人备考题库及答案详解(新)
- 餐饮行业食品安全管理实操方案
- 职工职业健康检查流程及标准
- 外贸企业进出口合同管理办法
- 中职商务英语综合能力训练教材
- 中考地理知识点复习与试题解析集
- 大单元教学设计促进语文课堂改革
- 北京市顺义区2025-2026学年八年级上学期期末考试英语试题(原卷版+解析版)
- 中学生冬季防溺水主题安全教育宣传活动
- 2026年药厂安全生产知识培训试题(达标题)
- 2026年陕西省森林资源管理局局属企业公开招聘工作人员备考题库及参考答案详解1套
- 冷库防护制度规范
- 承包团建烧烤合同范本
- 口腔种植牙科普
- 英语A级常用词汇
- NB-T 47013.15-2021 承压设备无损检测 第15部分:相控阵超声检测
- 打针协议免责书
- 四川省成都市八年级上学期物理期末考试试卷及答案
评论
0/150
提交评论