版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届山东省临沂市第十九中学高二数学第一学期期末综合测试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.椭圆上的一点M到其左焦点的距离为2,N是的中点,则等于()A.1 B.2C.4 D.82.已知实数满足方程,则的最大值为()A.3 B.2C. D.3.已知椭圆,则椭圆的长轴长为()A.2 B.4C. D.84.在四面体中,,,,且,,则等于()A. B.C. D.5.已知关于的不等式的解集是,则的值是()A. B.5C. D.76.已知空间四边形,其对角线、,、分别是边、的中点,点在线段上,且使,用向量,表示向量是A. B.C. D.7.已知函数满足,则曲线在点处的切线方程为()A. B.C. D.8.是双曲线:上一点,已知,则的值()A. B.C.或 D.9.等比数列的各项均为正数,已知向量,,且,则A.12 B.10C.5 D.10.设函数在R上可导,其导函数为,且函数的图像如题(8)图所示,则下列结论中一定成立的是A.函数有极大值和极小值B.函数有极大值和极小值C.函数有极大值和极小值D.函数有极大值和极小值11.若方程表示双曲线,则此双曲线的虚轴长等于()A. B.C. D.12.蟋蟀鸣叫可以说是大自然优美、和谐的音乐,殊不知蟋蟀鸣叫的频率(每分钟鸣叫的次数)与气温(单位:℃)存在着较强的线性相关关系.某地观测人员根据如表的观测数据,建立了关于的线性回归方程,则下列说法不正确的是()(次数/分钟)2030405060(℃)2527.52932.536A.的值是20B.变量,呈正相关关系C.若的值增加1,则的值约增加0.25D.当蟋蟀52次/分鸣叫时,该地当时的气温预报值为33.5℃二、填空题:本题共4小题,每小题5分,共20分。13.已知双曲线,左右焦点分别为,若过右焦点的直线与以线段为直径的圆相切,且与双曲线在第二象限交于点,且轴,则双曲线的离心率是_________.14.圆关于直线的对称圆的标准方程为_______15.在公差不为的等差数列中,,,成等比数列,数列的前项和为(1)求数列的通项公式;(2)若,且数列的前项和为,求16.已知双曲线的左、右焦点分别为、,直线与的左、右支分别交于点、(、均在轴上方).若直线、的斜率均为,且四边形的面积为,则__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)设点P是曲线上的任意一点,k是该曲线在点P处的切线的斜率(1)求k的取值范围;(2)求当k取最大值时,该曲线在点P处的切线方程18.(12分)(1)若在是减函数,求实数m的取值范围;(2)已知函数在R上无极值点,求a的值.19.(12分)某情报站有.五种互不相同的密码,每周使用其中的一种密码,且每周都是从上周末使用的四种密码中等可能地随机选用一种.设第一周使用密码,表示第周使用密码的概率(1)求;(2)求证:为等比数列,并求的表达式20.(12分)平行六面体,(1)若,,,,,,求长;(2)若以顶点A为端点的三条棱长均为2,且它们彼此的夹角都是60°,则AC与所成角的余弦值21.(12分)已知数列是公差不为0的等差数列,首项,且成等比数列(1)求数列的通项公式;(2)设数列满足,求数列的前n项和22.(10分)已知椭圆,直线.(1)若直线与椭圆相切,求实数的值;(2)若直线与椭圆相交于A、两点,为线段的中点,为坐标原点,且,求实数的值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】先利用椭圆定义得到,再利用中位线定理得即可.【详解】由椭圆方程,得,由椭圆定义得,又,,又为的中点,为的中点,线段为中位线,∴.故选:C.2、D【解析】将方程化为,由圆的几何性质可得答案.【详解】将方程变形为,则圆心坐标为,半径,则圆上的点的横坐标的范围为:则x的最大值是故选:D.3、B【解析】根据椭圆的方程求出即得解.【详解】解:由题得椭圆的所以椭圆的长轴长为.故选:B4、B【解析】根据空间向量的线性运算即可求解.【详解】解:由题知,故选:B.5、D【解析】由题意可得的根为,然后利用根与系数的关系列方程组可求得结果【详解】因为关于的不等式的解集是,所以方程的根为,所以,得,所以,故选:D6、C【解析】根据所给的图形和一组基底,从起点出发,把不是基底中的向量,用是基底的向量来表示,就可以得到结论【详解】解:故选:【点睛】本题考查向量的基本定理及其意义,解题时注意方法,即从要表示的向量的起点出发,沿着空间图形的棱走到终点,若出现不是基底中的向量的情况,再重复这个过程,属于基础题7、A【解析】求出函数的导数,利用导数的定义求解,然后求解切线的斜率即可【详解】解:函数,可得,,可得,即,所以,可得,解得,所以,所以曲线在点处的切线方程为故选:A8、B【解析】根据双曲线定义,结合双曲线上的点到焦点的距离的取值范围,即可求解.【详解】双曲线方程为:,是双曲线:上一点,,,或,又,.故选:B9、C【解析】利用数量积运算性质、等比数列的性质及其对数运算性质即可得出【详解】向量=(,),=(,),且•=4,∴+=4,由等比数列的性质可得:=……===2,则log2(•)=故选C【点睛】本题考查数量积运算性质、等比数列的性质及其对数运算性质,考查推理能力与计算能力,属于中档题10、D【解析】则函数增;则函数减;则函数减;则函数增;选D.【考点定位】判断函数的单调性一般利用导函数的符号,当导函数大于0则函数递增,当导函数小于0则函数递减11、B【解析】根据双曲线标准方程直接判断.【详解】方程即为,由方程表示双曲线,可得,所以,,所以虚轴长为,故选:B.12、D【解析】根据样本中心过经过线性回归方程、正相关的性质和线性回归方程的意义进行判断即可.【详解】由题意,得,,则,故A正确;由线性回归方程可知,,变量,呈正相关关系,故B正确;若的值增加1,则的值约增加0.25,故C正确;当时,,故D错误.故选:D.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据题意可得,进而可得,再根据,可得再根据双曲线的定义,即可得到,进而求出结果.【详解】如图所示:设切点为,所以,又轴所以,所以,由,,所以又,所以故答案为:.14、【解析】先将已知圆的方程化为标准形式,求得圆心坐标(2,2)和半径2,然后可根据直线的位置直接看出(2,2)点的对称点,进而写出方程.【详解】圆的标准方程为,圆心(2,2),半径为2,圆心(2,2)关于直线的对称点为原点,所以所求对称圆标准方程为,故答案为:15、(1)(2)【解析】(1)由解出,再由前项和为55求得,由等差数列通项公式即可求解;(2)先求出,再由裂项相消求和即可.【小问1详解】设公差为,由,,成等比数列,可得,即有,整理得,数列的前项和为55,可得,解得1,1,则;【小问2详解】,则16、【解析】设点关于原点的对称点为点,连接,分析可知四边形为平行四边形,可得出,设,可得出直线的方程为,设点、,将直线的方程与双曲线的方程联立,列出韦达定理,求出的取值范围,利用三角形的面积公式可求得的值,即可求得的值.【详解】解:设点关于原点的对称点为点,连接,如下图所示:在双曲线中,,,则,即点、,因为原点为、的中点,则四边形为平行四边形,所以,且,因为,故、、三点共线,所以,,故,由题意可知,,设,则直线的方程为,设点、,联立,可得,所以,,可得,由韦达定理可得,,可得,,整理可得,即,解得或(舍),所以,,解得.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)先求导数再求最值即可求解答案;(2)由(1)确定切点,从而也确定的斜率就可以求切线.【小问1详解】设,因为,所以,所以k的取值范围为【小问2详解】由(1)知,此时,即,所以此时曲线在点P处的切线方程为18、(1);(2)1【解析】(1)将问题转化为在内恒成立,求出的最小值,即可得到答案;(2)对函数求导得,由,即可得到答案;【详解】(1)依题意知,在内恒成立,所以在内恒成立,所以,因为的最小值为1,所以,所以实数m的取值范围是.(2),依题意有,即,,解得.19、(1),,,(2)证明见解析,【解析】(1)根据题意可得第一周使用A密码,第二周使用A密码的概率为0,第三周使用A密码的概率为,以此类推;(2)根据题意可知第周从剩下的四种密码中随机选用一种,恰好选到A密码的概率为,进而可得,结合等比数列的定义可知为等比数列,利用等比数列的通项公式即可求出结果.【小问1详解】,,,【小问2详解】第周使用A密码,则第周必不使用A密码(概率为),然后第周从剩下的四种密码中随机选用一种,恰好选到A密码的概率为故,即故为等比数列且,公比故,故20、(1);(2).【解析】(1)由,可得,再利用数量积运算性质即可得出;(2)以为一组基底,设与所成的角为,由求解.【小问1详解】,,,,∴,;【小问2详解】∵,,∴,∵,∴,∵=8,∴,设与所成的角为,则.21、(1);(2)【解析】(1)设数列的公差为d,根据等比中项的概念即可求出公差,再根据等差数列的通项公式即可求出答案;(2)由(1)得,再根据分组求和法即可求出答案【详解】解:(1)设数列的公差
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 高频电子企业面试题及答案
- 病历书写考试题附答案
- n1叉车考试试题及答案
- 影城员工考试题及答案
- 电大经济法律试题及答案
- 大一上西方经济学试题及答案
- 2026黑龙江大庆市大同区城市建设投资开发有限公司招聘劳务派遣人员12人参考题库附答案
- 中共广安市广安区肖溪镇纪律检查委员会选用2名片区纪检监督员的参考题库必考题
- 中央统战部直属事业单位2026年度应届高校毕业生招聘34人备考题库必考题
- 北京市怀柔区政务服务和数据管理局招聘行政辅助人员3人备考题库必考题
- 《立体裁剪》课件-9.女大衣立体裁剪
- 人教版四年级数学上学期期末冲刺卷(B)(含答案)
- 高龄妇女孕期管理专家共识(2024版)解读
- 2025年6月上海市高考语文试题卷(含答案详解)
- 地下矿山采掘安全培训课件
- 猪场驻场技术工作汇报
- 小程序海豚知道看课件
- 留置看护培训课件
- 数据要素流通标准化白皮书(2024版)
- 工程制药专业毕业论文
- 传统米醋制作工艺流程介绍
评论
0/150
提交评论