版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
陕西省咸阳市泾阳县2026届高二上数学期末考试模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设双曲线的左、右顶点分别为、,左、右焦点分别为、,以为直径的圆与双曲线左支的一个交点为若以为直径的圆与直线相切,则的面积为()A. B.C. D.2.已知,,若,则实数()A. B.C.2 D.3.已知椭圆的左焦点是,右焦点是,点P在椭圆上,如果线段的中点在y轴上,那么()A.3:5 B.3:4C.5:3 D.4:34.已知,是椭圆的左,右焦点,是的左顶点,点在过且斜率为的直线上,为等腰三角形,,则的离心率为A. B.C. D.5.曲线在点处的切线方程是A. B.C. D.6.设P是双曲线上的点,若,是双曲线的两个焦点,则()A.4 B.5C.8 D.107.某种疾病的患病率为0.5%,通过验血诊断该病的误诊率为2%,即非患者中有2%的人验血结果为阳性,患者中有2%的人验血结果为阴性,随机抽取一人进行验血,则其验血结果为阳性的概率为()A.0.0689 B.0.049C.0.0248 D.0.028.已知随圆与双曲线相同的焦点,则椭圆和双曲线的离心,分别为()A. B.C. D.9.在空间直角坐标系中,点关于轴对称的点的坐标为()A. B.C. D.10.函数的最小值是()A.2 B.4C.5 D.611.下列四个命题中为真命题的是()A.设p:1<x<2,q:2x>1,则p是q的必要不充分条件B.命题“”的否定是“”C.函数的最小值是4D.与的图象关于直线y=x对称12.南宋数学家杨辉在《详解九章算法》和《算法通变本末》中,提出了一些新的垛积公式,他所讨论的高阶等差数列与一般等差数列不同,前后两项之差并不相等,而是逐项差数之差或者高次差相等.对这类高阶等差数列的研究,在杨辉之后一般称为“垛积术”.现有一个高阶等差数列,其前6项分别为1,5,11,21,37,61,则该数列的第7项为()A.95 B.131C.139 D.141二、填空题:本题共4小题,每小题5分,共20分。13.已知函数,是的导函数,则______14.已知、是椭圆()长轴的两个端点,、是椭圆上关于轴对称的两点,直线,的斜率分别为,().若椭圆的离心率为,则的最小值为______15.已知数列满足(),设数列满足:,数列的前项和为,若()恒成立,则的取值范围是________16.若直线与直线平行,则实数m的值为____________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)定义:设是空间的一个基底,若向量,则称有序实数组为向量在基底下的坐标.已知是空间的单位正交基底,是空间的另一个基底,若向量在基底下的坐标为(1)求向量在基底下的坐标;(2)求向量在基底下的模18.(12分)已知数列的前n项和,满足,.(1)求证:数列是等差数列;(2)令,求数列的前n项和.19.(12分)已知函数的图像为曲线,点、.(1)设点为曲线上在第一象限内的任意一点,求线段的长(用表示);(2)设点为曲线上任意一点,求证:为常数;(3)由(2)可知,曲线为双曲线,请研究双曲线的性质(从对称性、顶点、渐近线、离心率四个角度进行研究).20.(12分)已知函数(1)求函数单调区间;(2)函数在区间上的最小值小于零,求a的取值范围21.(12分)如图,在三棱柱中,=2,且,⊥底面ABC.E为AB中点(1)求证:平面;(2)求平面与平面CEB夹角的余弦值22.(10分)设函数.(1)讨论函数在区间上的单调性;(2)函数,若对任意的,总存在使得,求实数的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】据三角形中位线可得;再由双曲线的定义求出,进而求出的面积【详解】双曲线的方程为:,,设以为直径的圆与直线相切与点,则,且,,∥.又为的中点,,又,,的面积为:.故选:C2、D【解析】根据给定条件利用空间向量平行的坐标表示计算作答.【详解】因,,又,则,解得,所以实数.故选:D3、A【解析】求出椭圆的焦点坐标,再根据点在椭圆上,线段的中点在轴上,求得点坐标,进而计算,从而求解.【详解】由椭圆方程可得:,设点坐标为,线段的中点为,因为线段中点在轴上,所以,即,代入椭圆方程得或,不妨取,则,所以,故选:A.4、D【解析】分析:先根据条件得PF2=2c,再利用正弦定理得a,c关系,即得离心率.详解:因为等腰三角形,,所以PF2=F1F2=2c,由斜率为得,,由正弦定理得,所以,故选D.点睛:解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于的方程或不等式,再根据的关系消掉得到的关系式,而建立关于的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.5、D【解析】先求导数,得切线的斜率,再根据点斜式得切线方程.【详解】,选D.点睛】本题考查导数几何意义以及直线点斜式方程,考查基本求解能力,属基础题.6、C【解析】根据双曲线的定义可得:,结合双曲线的方程可得答案.【详解】由双曲线可得根据双曲线的定义可得:故选:C7、C【解析】根据全概率公式即可求出【详解】随机抽取一人进行验血,则其验血结果为阳性的概率为0.0248故选:C8、B【解析】设公共焦点为,推导出,可得出,进而可求得、的值.【详解】设公共焦点为,则,则,即,故,即,,故选:B9、B【解析】结合已知条件,利用对称的概念即可求解.【详解】不妨设点关于轴对称的点的坐标为,则线段垂直于轴且的中点在轴,从而点关于轴对称的点的坐标为.故选:B.10、C【解析】结合基本不等式求得所求的最小值.【详解】,,当且仅当时等号成立.故选:C11、D【解析】根据推出关系和集合的包含关系判断A,根据全称命题的否定形式可判断B,根据对钩函数性质即三角函数的性质可判断C,根据反函数的图像性质可判断D.【详解】解:对于选项A:是的真子集,所以命题p是q的充分不必要条件,故A错误;对于选项B:命题“”的否定是“”,故B错误;对于选项C:函数,当时,,函数单调递减,当时取最小值,故C错误;对于选项D:与互为反函数,故图象关于直线y=x对称,故D正确.12、A【解析】利用已知条件,推出数列的差数的差组成的数列是等差数列,转化求解即可【详解】由题意可知,1,5,11,21,37,61,……,的差的数列为4,6,10,16,24,……,则这个数列的差组成的数列为:2,4,6,8,……,是一个等差数列,设原数列的第7项为,则,解得,所以原数列的第7项为95,故选:A二、填空题:本题共4小题,每小题5分,共20分。13、2【解析】根据基本初等函数的导数公式及导数的加法法则,对求导,再求即可.【详解】由题设,,所以.故答案为:14、【解析】设出点,,,的坐标,表示出直线,的斜率,作和后利用基本不等式求最值,利用离心率求得与的关系,则答案可求详解】解:设,,,,,,,,,,,当且仅当,即时等号成立,是椭圆长轴的两个端点,,是椭圆上关于轴对称的两点,,,即,的最小值为,椭圆的离心率为,,即,得,的最小值为故答案为:15、【解析】先由条件求出的通项公式,得到,由裂项相消法再求出,根据不等式恒成立求出参数的范围即可.【详解】当时,有当时,由①有②由①-②得:所以,当时也成立.所以,故则由,即,所以所以,由所以故答案为:【点睛】本题考查求数列的通项公式,考查裂项相消法求和以及数列不等式问题,属于中档题.16、【解析】利用两条直线平行的充要条件,列式求解即可【详解】解:因为直线与直线平行,所以,解得故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)根据向量在基底下的坐标为,得出向量在基底下的坐标;(2)根据向量在基底下的坐标直接计算模即可【小问1详解】因为向量在基底下坐标为,则,所以向量在基底下的坐标为.【小问2详解】因为向量在基底下的坐标为,所以向量在基底下的模为.18、(1)证明见解析(2)【解析】(1)先将变为,然后等式两边同除即可得答案;(2)求出,再用错位相减求和【小问1详解】证明:∵∴由已知易得,∴∴数列是首项,公差为的等差数列;【小问2详解】由(1)可知,∴∴①②①-②有∴19、(1);(2)具体见解析;(3)具体见解析.【解析】(1)由两点间的距离公式求出距离,进而将式子化简即可;(2)求出,进而讨论两种情况,然后结合基本不等式即可证明问题;(3)根据为双曲线的焦点,结合双曲线的图形特征即可求得该双曲线的相关性质.【小问1详解】由题意,.【小问2详解】设,由(1),.若x>0,则,当且仅当时取“=”,则,,所以.若x<0,则,当且仅当时取“=”,则,,所以.综上:,为常数.【小问3详解】易知函数:为奇函数,则其图象关于原点对称.由(2)可知,曲线为双曲线,为双曲线的焦点,则它关于直线对称,还关于与垂直且过原点的直线对称.,则,易得.综上:双曲线关于原点(0,0)对称,且关于直线对称.容易知道,直线是双曲线C的渐近线.易知线段是双曲线的实轴,将代入双曲线解得顶点:.于是实轴长为焦距为,则离心率.20、(1)答案见解析;(2).【解析】(1)对求导并求定义域,讨论、分别判断的符号,进而确定单调区间.(2)由题设,结合(1)所得的单调性,讨论、、分别确定在给定区间上的最小值,根据最小值小于零求参数a的范围.【小问1详解】由题设,且定义域为,当,即时,在上,即在上递增;当,即时,在上,在上,所以在上递减,在上递增;【小问2详解】由(1)知:若,即时,则在上递增,故,可得;若,即时,则在上递减,在上递增,故,不合题设;若,即时,则在上递减,故,得;综上,a的取值范围.21、(1)证明见解析;(2).【解析】(1)连接与交于点O,连接OE,得到,再利用线面平行的判定定理证明即可;(2)根据,底面,建立空间直角坐标系,求得平面的一个法向量,再根据底面,得到平面一个法向量,然后由夹角公式求解.【小问1详解】如图所示:连接与交于点O,连接OE,如图,由分别为的中点所以,又平面,平面,所以平面;【小问2详解】由,底面,故底面建立如图所示空间直角坐标系:则,所以,设平面的一个法向量为:,则,即,令,则,则,因为底面,所以为平面一个法向量,所以所以平面与平面CEB夹角的余弦值为.22、(1)答案见解析;(2).【解析】(1)求导,根据导函数的正负性分类讨论进行求解即可;(2)根据存在性和任意性的定义,结合导数的性质、(1)的结论、构造函数法分
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026四川遂宁市公安局安居分局招聘警务辅助人员2人备考题库完整答案详解
- 2026年淄博高青县教育和体育局所属事业单位公开招聘工作人员的备考题库(25人)及答案详解一套
- 2026上海复旦大学相辉研究院招聘相辉研究院学术服务专员岗位1名备考题库及参考答案详解一套
- 2026广东湛江市坡头区坡头镇人民政府招聘政府雇员(非编制人员)1人备考题库及答案详解1套
- 2026上半年贵州事业单位联考贵州省应急管理厅招聘3人备考题库及一套完整答案详解
- 1.1 物质的变化和性质 同步学案(含答案) 初中化学人教版九年级上册
- 南医大儿科学试题(三套)及答案
- 2026北京大兴区三友爱新企业管理有限公司招聘劳务派遣人员1人备考题库及完整答案详解
- 2026广东广州市华南理工大学医院合同制人员招聘2人备考题库及答案详解(夺冠系列)
- 2026年1月福建厦门市集美区灌口医院补充编外人员招聘2人备考题库及答案详解参考
- QGDW11486-2022继电保护和安全自动装置验收规范
- 2025年事业单位公开招聘考试(D类)《职业能力倾向测验》新版真题卷(附详细解析)
- 2025年尾矿综合利用技术突破与生态修复技术协同创新研究
- 2025招商局集团有限公司所属单位岗位合集笔试参考题库附带答案详解
- 评定与追溯管理制度
- 武汉科技大学c语言期末试卷及答案
- T/CAS 612-2022碳中和管理体系要求
- 山东师范大学期末考试大学英语(本科)题库含答案
- 锂电行业异物管控
- 抖音本地生活服务商培训体系
- 精神疾病康复课件
评论
0/150
提交评论