版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届江西省横峰中学数学高三上期末检测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.《九章算术》有如下问题:“今有金箠,长五尺,斩本一尺,重四斤;斩末一尺,重二斤,问次一尺各重几何?”意思是:“现在有一根金箠,长五尺在粗的一端截下一尺,重斤;在细的一端截下一尺,重斤,问各尺依次重多少?”按这一问题的颗设,假设金箠由粗到细各尺重量依次成等差数列,则从粗端开始的第二尺的重量是()A.斤 B.斤 C.斤 D.斤2.已知方程表示的曲线为的图象,对于函数有如下结论:①在上单调递减;②函数至少存在一个零点;③的最大值为;④若函数和图象关于原点对称,则由方程所确定;则正确命题序号为()A.①③ B.②③ C.①④ D.②④3.如图所示,为了测量、两座岛屿间的距离,小船从初始位置出发,已知在的北偏西的方向上,在的北偏东的方向上,现在船往东开2百海里到达处,此时测得在的北偏西的方向上,再开回处,由向西开百海里到达处,测得在的北偏东的方向上,则、两座岛屿间的距离为()A.3 B. C.4 D.4.已知双曲线:的焦点为,,且上点满足,,,则双曲线的离心率为A. B. C. D.55.已知函数在上可导且恒成立,则下列不等式中一定成立的是()A.、B.、C.、D.、6.设,是两条不同的直线,,是两个不同的平面,给出下列四个命题:①若,,则;②若,,则;③若,,则;④若,,则;其中真命题的个数为()A. B. C. D.7.已知双曲线与双曲线有相同的渐近线,则双曲线的离心率为()A. B. C. D.8.将4名大学生分配到3个乡镇去当村官,每个乡镇至少一名,则不同的分配方案种数是()A.18种 B.36种 C.54种 D.72种9.已知函数,,若存在实数,使成立,则正数的取值范围为()A. B. C. D.10.执行如图所示的程序框图,则输出的结果为()A. B. C. D.11.函数(),当时,的值域为,则的范围为()A. B. C. D.12.已知,为两条不同直线,,,为三个不同平面,下列命题:①若,,则;②若,,则;③若,,则;④若,,则.其中正确命题序号为()A.②③ B.②③④ C.①④ D.①②③二、填空题:本题共4小题,每小题5分,共20分。13.将2个相同的红球和2个相同的黑球全部放入甲、乙、丙、丁四个盒子里,其中甲、乙盒子均最多可放入2个球,丙、丁盒子均最多可放入1个球,且不同颜色的球不能放入同一个盒子里,共有________种不同的放法.14.若函数在区间上恰有4个不同的零点,则正数的取值范围是______.15.若函数,则的值为______.16.已知数列满足:点在直线上,若使、、构成等比数列,则______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)对于给定的正整数k,若各项均不为0的数列满足:对任意正整数总成立,则称数列是“数列”.(1)证明:等比数列是“数列”;(2)若数列既是“数列”又是“数列”,证明:数列是等比数列.18.(12分)已知矩形中,,E,F分别为,的中点.沿将矩形折起,使,如图所示.设P、Q分别为线段,的中点,连接.(1)求证:平面;(2)求二面角的余弦值.19.(12分)如图,在中,角的对边分别为,且满足,线段的中点为.(Ⅰ)求角的大小;(Ⅱ)已知,求的大小.20.(12分)车工刘师傅利用数控车床为某公司加工一种高科技易损零件,对之前加工的100个零件的加工时间进行统计,结果如下:加工1个零件用时(分钟)20253035频数(个)15304015以加工这100个零件用时的频率代替概率.(1)求的分布列与数学期望;(2)刘师傅准备给几个徒弟做一个加工该零件的讲座,用时40分钟,另外他打算在讲座前、讲座后各加工1个该零件作示范.求刘师傅讲座及加工2个零件作示范的总时间不超过100分钟的概率.21.(12分)已知.(Ⅰ)若,求不等式的解集;(Ⅱ),,,求实数的取值范围.22.(10分)已知函数.(1)若,求不等式的解集;(2)若“,”为假命题,求的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】
依题意,金箠由粗到细各尺重量构成一个等差数列,则,由此利用等差数列性质求出结果.【详解】设金箠由粗到细各尺重量依次所成得等差数列为,设首项,则,公差,.故选B【点睛】本题考查了等差数列的通项公式,考查了推理能力与计算能力,属于基础题.2、C【解析】
分四类情况进行讨论,然后画出相对应的图象,由图象可以判断所给命题的真假性.【详解】(1)当时,,此时不存在图象;(2)当时,,此时为实轴为轴的双曲线一部分;(3)当时,,此时为实轴为轴的双曲线一部分;(4)当时,,此时为圆心在原点,半径为1的圆的一部分;画出的图象,由图象可得:对于①,在上单调递减,所以①正确;对于②,函数与的图象没有交点,即没有零点,所以②错误;对于③,由函数图象的对称性可知③错误;对于④,函数和图象关于原点对称,则中用代替,用代替,可得,所以④正确.故选:C【点睛】本题主要考查了双曲线的简单几何性质,函数的图象与性质,函数的零点概念,考查了数形结合的数学思想.3、B【解析】
先根据角度分析出的大小,然后根据角度关系得到的长度,再根据正弦定理计算出的长度,最后利用余弦定理求解出的长度即可.【详解】由题意可知:,所以,,所以,所以,又因为,所以,所以.故选:B.【点睛】本题考查解三角形中的角度问题,难度一般.理解方向角的概念以及活用正、余弦定理是解答问题的关键.4、D【解析】
根据双曲线定义可以直接求出,利用勾股定理可以求出,最后求出离心率.【详解】依题意得,,,因此该双曲线的离心率.【点睛】本题考查了双曲线定义及双曲线的离心率,考查了运算能力.5、A【解析】
设,利用导数和题设条件,得到,得出函数在R上单调递增,得到,进而变形即可求解.【详解】由题意,设,则,又由,所以,即函数在R上单调递增,则,即,变形可得.故选:A.【点睛】本题主要考查了利用导数研究函数的单调性及其应用,以及利用单调性比较大小,其中解答中根据题意合理构造新函数,利用新函数的单调性求解是解答的关键,着重考查了构造思想,以及推理与计算能力,属于中档试题.6、C【解析】
利用线线、线面、面面相应的判定与性质来解决.【详解】如果两条平行线中一条垂直于这个平面,那么另一条也垂直于这个平面知①正确;当直线平行于平面与平面的交线时也有,,故②错误;若,则垂直平面内以及与平面平行的所有直线,故③正确;若,则存在直线且,因为,所以,从而,故④正确.故选:C.【点睛】本题考查空间中线线、线面、面面的位置关系,里面涉及到了相应的判定定理以及性质定理,是一道基础题.7、C【解析】
由双曲线与双曲线有相同的渐近线,列出方程求出的值,即可求解双曲线的离心率,得到答案.【详解】由双曲线与双曲线有相同的渐近线,可得,解得,此时双曲线,则曲线的离心率为,故选C.【点睛】本题主要考查了双曲线的标准方程及其简单的几何性质的应用,其中解答中熟记双曲线的几何性质,准确运算是解答的关键,着重考查了运算与求解能力,属于基础题.8、B【解析】
把4名大学生按人数分成3组,为1人、1人、2人,再把这三组分配到3个乡镇即得.【详解】把4名大学生按人数分成3组,为1人、1人、2人,再把这三组分配到3个乡镇,则不同的分配方案有种.故选:.【点睛】本题考查排列组合,属于基础题.9、A【解析】
根据实数满足的等量关系,代入后将方程变形,构造函数,并由导函数求得的最大值;由基本不等式可求得的最小值,结合存在性问题的求法,即可求得正数的取值范围.【详解】函数,,由题意得,即,令,∴,∴在上单调递增,在上单调递减,∴,而,当且仅当,即当时,等号成立,∴,∴.故选:A.【点睛】本题考查了导数在求函数最值中的应用,由基本不等式求函数的最值,存在性成立问题的解法,属于中档题.10、D【解析】循环依次为直至结束循环,输出,选D.点睛:算法与流程图的考查,侧重于对流程图循环结构的考查.先明晰算法及流程图的相关概念,包括选择结构、循环结构、伪代码,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项.11、B【解析】
首先由,可得的范围,结合函数的值域和正弦函数的图像,可求的关于实数的不等式,解不等式即可求得范围.【详解】因为,所以,若值域为,所以只需,∴.故选:B【点睛】本题主要考查三角函数的值域,熟悉正弦函数的单调性和特殊角的三角函数值是解题的关键,侧重考查数学抽象和数学运算的核心素养.12、C【解析】
根据直线与平面,平面与平面的位置关系进行判断即可.【详解】根据面面平行的性质以及判定定理可得,若,,则,故①正确;若,,平面可能相交,故②错误;若,,则可能平行,故③错误;由线面垂直的性质可得,④正确;故选:C【点睛】本题主要考查了判断直线与平面,平面与平面的位置关系,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
讨论装球盒子的个数,计算得到答案.【详解】当四个盒子有球时:种;当三个盒子有球时:种;当两个盒子有球时:种.故共有种,故答案为:.【点睛】本题考查了排列组合的综合应用,意在考查学生的理解能力和应用能力.14、;【解析】
求出函数的零点,让正数零点从小到大排列,第三个正数零点落在区间上,第四个零点在区间外即可.【详解】由,得,,,,∵,∴,解得.故答案为:.【点睛】本题考查函数的零点,根据正弦函数性质求出函数零点,然后题意,把正数零点从小到大排列,由于0已经是一个零点,因此只有前3个零点在区间上.由此可得的不等关系,从而得出结论,本题解法属于中档题.15、【解析】
根据题意,由函数的解析式求出的值,进而计算可得答案.【详解】根据题意,函数,则,则;故答案为:.【点睛】本题考查分段函数的性质、对数运算法则的应用,考查函数与方程思想、转化与化归思想,考查运算求解能力.16、13【解析】
根据点在直线上可求得,由等比中项的定义可构造方程求得结果.【详解】在上,,成等比数列,,即,解得:.故答案为:.【点睛】本题考查根据三项成等比数列求解参数值的问题,涉及到等比中项的应用,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见详解;(2)证明见详解【解析】
(1)由是等比数列,由等比数列的性质可得:即可证明.(2)既是“数列”又是“数列”,可得,,则对于任意都成立,则成等比数列,设公比为,验证得答案.【详解】(1)证明:由是等比数列,由等比数列的性质可得:等比数列是“数列”.(2)证明:既是“数列”又是“数列”,可得,()(),()可得:对于任意都成立,即成等比数列,即成等比数列,成等比数列,成等比数列,设,()数列是“数列”时,由()可得:时,由()可得:,可得,同理可证成等比数列,数列是等比数列【点睛】本题是一道数列的新定义题目,考查了等比数列的性质、通项公式等基本知识,考查代数推理、转化与化归以及综合运用数学知识探究与解决问题的能力,属于难题.18、(1)证明见解析(2)【解析】
(1)取中点R,连接,,可知中,且,由Q是中点,可得则有且,即四边形是平行四边形,则有,即证得平面.(2)建立空间直角坐标系,求得半平面的法向量:,然后利用空间向量的相关结论可求得二面角的余弦值.【详解】(1)取中点R,连接,,则在中,,且,又Q是中点,所以,而且,所以,所以四边形是平行四边形,所以,又平面,平面,所以平面.(2)在平面内作交于点G,以E为原点,,,分别为x,y,x轴,建立如图所示的空间直角坐标系,则各点坐标为,,,所以,,设平面的一个法向量为,则即,取,得,又平面的一个法向量为,所以.因此,二面角的余弦值为【点睛】本题考查线面平行的判定,考查利用空间向量求解二面角,考查逻辑推理能力及运算求解能力,难度一般.19、(Ⅰ);(Ⅱ).【解析】
(Ⅰ)由正弦定理边化角,再结合转化即可求解;(Ⅱ)可设,由,再由余弦定理解得,对中,由余弦定理有,通过勾股定理逆定理可得,进而得解【详解】(Ⅰ)由正弦定理得.而.由以上两式得,即.由于,所以,又由于,得.(Ⅱ)设,在中,由正弦定理有.由余弦定理有,整理得,由于,所以.在中,由余弦定理有.所以,所以.【点睛】本题考查正弦定理和余弦定理的综合运用,属于中档题20、(1)分布列见解析,;(2)0.8575【解析】
(1)根据题目所给数据求得分布列,并计算出数学期望.(2)根据对立事件概率计算公式、相互独立事件概率计算公式,计算出刘师傅讲座及加工个零件作示范的总时间不超过分钟的概率.【详解】(1)的分布列如下:
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 餐饮服务题库含参考答案
- 医学影像检查技术学试题库及答案
- 中医内科出科试题及答案
- 急诊与灾难医学考试题目及答案
- 中级财务会计试卷及答案
- 电工安全知识试题及答案
- 近十年浙江省考试卷及答案
- 主要负责人(广东省)考试题库及安全员附答案
- 建筑质检员考试题及答案
- 技能大赛《网络安全管理实践》考试题库(附答案)
- 2025年担保公司考试题库(含答案)
- 营养员指导员培训
- 期末模拟测试(试卷)2025-2026学年六年级语文上册(统编版)
- 2025-2026学年苏教版小学数学三年级上册期末综合测试卷及答案(三套)
- 服装厂生产流程标准操作程序
- 2025至2030伴侣动物诊断行业发展趋势分析与未来投资战略咨询研究报告
- 授信财务知识培训课件
- 师范类学生教学能力提升计划
- 2025年中国燕麦数据监测报告
- 地理八上期末考试试卷及答案
- 景区工作总结汇报
评论
0/150
提交评论