版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届福建漳州市数学高二上期末考试试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.中国明代商人程大位对文学和数学颇感兴趣,他于60岁时完成杰作《直指算法统宗》.这是一本风行东亚的数学名著,该书A.76石 B.77石C.78石 D.79石2.已知椭圆的左、右焦点分别为,过的直线与椭圆C相交P,Q两点,若,且,则椭圆C的离心率为()A. B.C. D.3.已知双曲线:的左、右焦点分别为,,过点且斜率为的直线与双曲线在第二象限的交点为,若,则双曲线的离心率是()A B.C. D.4.若直线的一个方向向量为,直线的一个方向向量为,则直线与所成的角为()A30° B.45°C.60° D.90°5.已知椭圆的一个焦点坐标为,则的值为()A.1 B.3C.9 D.816.已知双曲线的左右焦点分别是和,点关于渐近线的对称点恰好落在圆上,则双曲线的离心率为()A. B.2C. D.37.已知则是的A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件8.已知定义在R上的函数满足,且当时,,则下列结论中正确的是()A. B.C. D.9.已知数列为等差数列,则下列数列一定为等比数列的是()A. B.C. D.10.已知向量与向量垂直,则实数x的值为()A.﹣1 B.1C.﹣6 D.611.一个动圆与定圆相外切,且与直线相切,则动圆圆心的轨迹方程为()A. B.C. D.12.如图,某绿色蔬菜种植基地在A处,要把此处生产的蔬菜沿道路或运送到形状为四边形区域的农贸市场中去,现要求在农贸市场中确定一条界线,使位于界线一侧的点沿道路运送蔬菜较近,而另一侧的点沿道路运送蔬菜较近,则该界线所在曲线为()A.圆 B.椭圆C.双曲线 D.抛物线二、填空题:本题共4小题,每小题5分,共20分。13.已知在时有极值0,则的值为____14.不等式的解集是________15.如图,正方体的棱长为1,P为BC的中点,Q为线段上的动点,过点A,P,Q的平面截该正方体所得的截面记为S.则下列命题正确的是_________(写出所有正确命题的编号).①当时,S为四边形;②当时,S为等腰梯形;③当时,S与的交点R满足;④当时,S为六边形;⑤当时,S的面积为.16.一条直线经过,并且倾斜角是直线的倾斜角的2倍,则直线的方程为__________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)等比数列中,,(1)求的通项公式;(2)记为的前n项和.若,求m的值18.(12分)如图,直四棱柱的底面是菱形,,,直线与平面ABCD所成角的正弦值为.E,F分别为、的中点.(1)求证:平面BED;(2)求直线与平面FAC所成角的正弦值.19.(12分)已知椭圆的中心在原点,对称轴为坐标轴且焦点在轴上,抛物线:,若抛物线的焦点在椭圆上,且椭圆的离心率为.(1)求椭圆的方程;(2)已知斜率存在且不为零的直线满足:与椭圆相交于不同两点、,与直线相交于点.若椭圆上一动点满足:,,且存在点,使得恒为定值,求的值.20.(12分)已知函数在处的切线与直线平行(1)求值,并求此切线方程;(2)证明:21.(12分)已知椭圆()的左、右焦点为,,,离心率为(1)求椭圆的标准方程(2)的左顶点为,过右焦点的直线交椭圆于,两点,记直线,,的斜率分别为,,,求证:22.(10分)某车间打算购买2台设备,该设备有一个易损零件,在购买设备时可以额外购买这种易损零件作为备件,价格为每个100元.在设备使用期间,零件损坏,备件不足再临时购买该零件,价格为每个300元.在使用期间,每台设备需要更换的零件个数的分布列为567.表示2台设备使用期间需更换的零件数,代表购买2台设备的同时购买易损零件的个数.(1)求的分布列;(2)以购买易损零件所需费用的期望为决策依据,试问在和中,应选哪一个?
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】设出未知数,列出方程组,求出答案.【详解】设甲、乙、丙分得的米数为x+d,x,x-d,则,解得:d=18,,解得:x=60,所以x+d=60+18=78(石)故选:C2、B【解析】设,由椭圆的定义及,结合勾股定理求参数m,进而由勾股定理构造椭圆参数的齐次方程求离心率.【详解】设,椭圆的焦距为,则,由,有,解得,所以,故得:故选:B.3、B【解析】根据得到三角形为等腰三角形,然后结合双曲线的定义得到,设,进而作,得出,由此求出结果【详解】因为,所以,即所以,由双曲线的定义,知,设,则,易得,如图,作,为垂足,则,所以,即,即双曲线的离心率为.故选:B4、C【解析】直接由公式,计算两直线的方向向量的夹角,进而得出直线与所成角的大小【详解】因为,,所以,所以,所以直线与所成角的大小为故选:C5、A【解析】根据条件,利用椭圆标准方程中长半轴长a,短半轴长b,半焦距c关系列式计算即得.【详解】由椭圆的一个焦点坐标为,则半焦距c=2,于是得,解得,所以值为1.故选:A6、B【解析】首先求出F1到渐近线的距离,利用F1关于渐近线的对称点恰落在圆上,可得直角三角形,利用勾股定理得到关于ac的齐次式,即可求出双曲线的离心率【详解】由题意可设,则到渐近线的距离为.设关于渐近线的对称点为M,F1M与渐近线交于A,∴MF1=2b,A为F1M的中点.又O是F1P的中点,∴OA∥F2M,∴为直角,所以△为直角三角形,由勾股定理得:,所以,所以,所以离心率故选:B.7、A【解析】先解不等式,再比较集合包含关系确定选项.【详解】因为,所以是的充分不必要条件,选A.【点睛】本题考查解含绝对值不等式、解一元二次不等式以及充要关系判定,考查基本分析求解能力,属基础题.8、B【解析】由可得,利用导数判断函数在上的单调性,由此比较函数值的大小确定正确选项.【详解】∵∴,当时,,∴,故∴在内单调递增,又,∴,所以故选:B9、A【解析】根据等比数列的定义判断【详解】设的公差是,即,显然,且是常数,是等比数列,若中一个为1,则,则不是等比数列,只要,,都不可能是等比数列,如,,故选:A10、B【解析】根据数量积的坐标计算公式代入可得的值【详解】解:向量,与向量垂直,则,由数量积的坐标公式可得:,解得,故选:【点睛】本题考查空间向量的坐标运算,以及数量积的坐标公式,属于基础题11、D【解析】根据点到直线的距离与点到点之间距离的关系化简即可.【详解】定圆的圆心,半径为2,设动圆圆心P点坐标为(x,y),动圆的半径为r,d为动圆圆心到直线的距离,即r,则根据两圆相外切及直线与圆相切的性质可得,所以,化简得:∴动圆圆心轨迹方程为故选:D12、C【解析】设是界限上的一点,则,即,再根据双曲线的定义即可得出答案.【详解】解:设是界限上的一点,则,所以,即,在中,,所以点的轨迹为双曲线,即该界线所在曲线为双曲线.故选:C.二、填空题:本题共4小题,每小题5分,共20分。13、11【解析】由题知,且,所以,得或,①当时,,此时,,所以函数单调递增无极值,舍去②当时,,此时,是函数的极值点,符合题意,∴14、【解析】先将分式不等式化为一元二次不等式,再根据一元二次不等式的解法解不等式即可【详解】∵,∴(x﹣2)(x+4)<0,∴-4<x<2,即不等式的解集为{x|-4<x<2}故答案为.【点睛】本题主要考查分式不等式及一元二次不等式的解法,比较基础15、①②③⑤【解析】①由如图当点向移动时,满足,只需在上取点满足,即可得截面为四边形,如图所示,是四边形,故①正确;②当时,即为中点,此时可得PQ∥AD,AP=QD==,故可得截面APQD为等腰梯形,等腰梯形,故②正确;③当时,如图,延长至,使,连接交于,连接交于,连接,可证,由∽,可得,故可得,故③正确;④由③可知当时,只需点上移即可,此时的截面形状仍然如图所示的,如图是五边形,故④不正确;⑤当时,与重合,取的中点,连接,可证,且,可知截面为为菱形,故其面积为,如图是菱形,面积为,故⑤正确,故答案为①②③⑤考点:正方体的性质.16、【解析】先求出直线倾斜角,从而可求得直线的倾斜角,则可求出直线的斜率,进而可求出直线的方程【详解】因为直线的斜率为,所以直线的倾斜角为,所以直线的倾斜角为,所以直线的斜率为,因为直线经过,所以直线的方程为,即,故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)或;(2)5.【解析】(1)设的公比为q,解方程即得解;(2)分两种情况解方程即得解.【小问1详解】解:设的公比为q,由题设得由已知得,解得(舍去),或故或【小问2详解】解:若,则由,得,解得若,则由,得,因为,所以此方程没有正整数解综上,18、(1)证明见解析(2)【解析】(1)证明垂直于平面BED内的两条相交直线,即可得到答案;(2)分别以OB,OC,OE为x轴,y轴,z轴,建立直角坐标系,平面FAC的一个法向量为,代入向量的夹角公式,即可得到答案;【小问1详解】∵ABCD为菱形,∴,设AC与BD的交点为O,则OE为的中位线,∴.由题意得平面ABCD,∴平面ABCD,而AC平面ABCD中,∴.又,∴平面BED.小问2详解】∵ABCD为菱形,,∴为正三角形,∴.∵平面ABCD,∴与平面ABCD所成角,由,得,所以.如图,分别以OB,OC,OE为x轴,y轴,z轴,建立直角坐标系,则,,,,,,,设平面FAC的法向量为,则由可得,取,故可得平面FAC的一个法向量为,记直线与平面FAC的夹角为,则19、(1)(2)【解析】(1)先求得椭圆的,代入公式即可求得椭圆的方程;(2)以设而不求的方法得到两根和,再由条件,得到四边形为平行四边形,并以向量方式进行等价转化,再与恒为定值进行联系,即可求得的值.【小问1详解】由条件可设椭圆:,因为抛物线:的焦点为,所以,解得因为椭圆离心率为,所以,则,故椭圆的方程为【小问2详解】设直线:,,,把直线的方程代入椭圆的方程,可得,所以,因为,,所以四边形为平行四边形,得,即,得由在椭圆上可得,,即因为,又所以,所以将代入得,所以,即.【点睛】数形结合是数学解题中常用的思想方法,数形结合的思想可以使某些抽象的数学问题直观化、生动化,能够变抽象思维为形象思维,有助于把握数学问题的本质;另外,由于使用了数形结合的方法,很多问题便迎刃而解,且解法简捷。20、(1);;(2)证明见解析.【解析】(1)根据导数几何意义可知,解方程求得,进而得到切线方程;(2)当时,由,知不等式成立;当时,令,利用导数可求得在上单调递增,从而得到,由此可得结论.【小问1详解】,,在处的切线与直线平行,即切线斜率为,,解得:,,,所求切线方程为:,即;【小问2详解】要证,即证;①当时,,,,即,;②当时,令,,,当时,,,,,即,在上单调递增,,在上单调递增,,即在上恒成立;综上所述:.【点睛】思路点睛:本题第二问考查利用导数证明不等式的问题,解题的基本思路是将问题转化为函数最值的求解问题;通过构造函数,利用导数求函数最值的方法可确定恒成立,从而得到所证结论.21、(1);(2)证明见解析【解析】(1)由可求出,结合离心率可知,进而可求出,即可求出标准方程.(2)由题意知,,则由直线的点斜式方程可得直线的解析式为,与椭圆进行联立,设,,结合韦达定理可得,从而由斜率的计算公式对进行整理化简从而可证明.【详解】(1)解:因为,所以.又因为离心率,所以,则,所以椭圆的标准方程是(2)证明:由题意知,,,则直线的解析式为,代入椭圆方程,得设,,则.又因为,,所以【点睛】关键点睛:本题第
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 肿瘤学面试题库及答案
- 重庆社区考试试题及答案
- 执业医师加试之儿科考试真题试卷+答案
- 专升本词汇试题及答案
- 银行专业知识试题及答案
- 助产面试题库及答案
- 教师招聘之《中学教师招聘》预测复习附参考答案详解【能力提升】
- 双鸭山市辅警考试题《公安基础知识》综合能力试题库(附答案)
- 2025年四川省特种设备相关管理电梯培训模拟试题(含答案)
- 粮油保管员考试试题附带答案解析
- 浙江省杭州市萧山区2024-2025学年六年级上学期语文期末试卷(含答案)
- 学堂在线 雨课堂 学堂云 实绳结技术 章节测试答案
- 铸牢中华民族共同体意识课件
- 推广经理半年工作计划
- 110kV线路运维方案
- 智能化弱电工程常见质量通病的避免方法
- 屋顶光伏安全专项施工方案
- 医疗器械拓展性临床试验管理规定(试行)YY/T-0292.1-2020《医用诊断X射线辐射防护器具》
- 《中国古代文学通识读本》pdf
- 罐区加温操作规程
- 国有企业干部选拔任用工作系列表格优质资料
评论
0/150
提交评论