版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省兴宁一中2026届高二数学第一学期期末统考试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.正方体的棱长为,为侧面内动点,且满足,则△面积的最小值为()A. B.C. D.2.在等比数列中,,,则等于()A.90 B.30C.70 D.403.已知圆,若存在过点的直线与圆C相交于不同两点A,B,且,则实数a的取值范围是()A. B.C. D.4.设等差数列的前n项和为.若,则()A.19 B.21C.23 D.385.设.若,则=()A. B.C. D.e6.青花瓷是中华陶瓷烧制工艺的珍品,也是中国瓷器的主流品种之一.如图,是一青花瓷花瓶,其外形上下对称,可看成是双曲线的一部分绕其虚轴旋转所形成的曲面.若该花瓶的瓶口直径为瓶身最小直径的2倍,花瓶恰好能放入与其等高的正方体包装箱内,则双曲线的离心率为()A. B.C. D.7.过点且斜率为的直线方程为()A. B.C D.8.在平形六面体中,其中,,,,,则的长为()A. B.C. D.9.即空气质量指数,越小,表明空气质量越好,当不大于100时称空气质量为“优良”.如图是某市3月1日到12日的统计数据.则下列叙述正确的是A.这天的的中位数是B.天中超过天空气质量为“优良”C.从3月4日到9日,空气质量越来越好D.这天的的平均值为10.已知数据的平均数是,方差是4,则数据的方差是()A.3.4 B.3.6C.3.8 D.411.已知在空间直角坐标系(O为坐标原点)中,点关于x轴的对称点为点B,则z轴与平面OAB所成的线面角为()A. B.C. D.12.执行如图所示的程序框图,若输入t的取值范围为,则输出s的取值范围为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知函数有两个极值点,则实数a的取值范围为________.14.已知正三角形边长为a,则该三角形内任一点到三边的距离之和为定值.类比上述结论,在棱长为a的正四面体内,任一点到其四个面的距离之和为定值_____.15.用1,2,3,4排成的无重复数字的四位数中,其中1和2不能相邻的四位数的个数为___________(用数字作答).16.已知,,若,则______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)设F为椭圆的右焦点,过点的直线与椭圆C交于两点.(1)若点B为椭圆C的上顶点,求直线的方程;(2)设直线的斜率分别为,,求证:为定值.18.(12分)已知抛物线的焦点为,点在抛物线上,且的面积为(为坐标原点)(1)求抛物线的标准方程;(2)点、是抛物线上异于原点的两点,直线、的斜率分别为、,若,求证:直线恒过定点19.(12分)在平面直角坐标系xOy中,直线l的参数方程为(t为参数),直线l与x轴交于点P.以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为(1)求直线l的普通方程与曲线C的直角坐标方程;(2)若直线l与曲线C相交于A,B两点,求的值20.(12分)设数列的前n项和为,且,数列(1)求和的通项公式;(2)设数列的前n项和为,证明:21.(12分)如图,四棱锥P—ABCD中,底面ABCD是边长为的正方形E,F分别为PC,BD的中点,侧面PAD⊥底面ABCD,且PA=PD=AD.(Ⅰ)求证:EF//平面PAD;(Ⅱ)求三棱锥C—PBD的体积.22.(10分)同时抛掷两颗骰子,观察向上点数.(1)试表示“出现两个1点”这个事件相应的样本空间的子集;(2)求出现两个1点”的概率;(3)求“点数之和为7”的概率.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】建立空间直角坐标系如图所示,设由,得出点的轨迹方程,由几何性质求得,再根据垂直关系求出△面积的最小值【详解】以点为原点,分别为轴建立空间直角坐标系,如图所示:则,,设所以,得,所以因为平面,所以故△面积的最小值为故选:B2、D【解析】根据等比数列的通项公式即可求出答案.【详解】设该等比数列的公比为q,则,则.故选:D3、D【解析】根据圆的割线定理,结合圆的性质进行求解即可.【详解】圆的圆心坐标为:,半径,由圆的割线定理可知:,显然有,或,因为,所以,于是有,因为,所以,而,或,所以,故选:D4、A【解析】由已知及等差数列的通项公式得到公差d,再利用前n项和公式计算即可.【详解】设等差数列的公差为d,由已知,得,解得,所以.故选:A5、D【解析】由题可得,将代入解方程即可.【详解】∵,∴,∴,解得.故选:D.6、C【解析】由题意作出轴截面,最短直径为2a,根据已知条件点(2a,2a)在双曲线上,代入双曲线的标准方程,结合a,b,c的关系可求得离心率e的值【详解】由题意作出轴截面如图:M点是双曲线与截面正方形的交点之一,设双曲线的方程为:最短瓶口直径为A1A2=2a,则由已知可得M是双曲线上的点,且M(2a,2a)故,整理得4a2=3b2=3(c2﹣a2),化简后得,解得故选:C7、B【解析】利用点斜式可得出所求直线的方程.【详解】由题意可知所求直线的方程为,即.故选:B.8、B【解析】根据空间向量基本定理、加法的运算法则,结合空间向量数量积的运算性质进行求解即可.【详解】因为是平行六面体,所以,所以有:,因此有:,因为,,,,,所以,所以,故选:B9、C【解析】这12天的AQI指数值的中位数是,故A不正确;这12天中,空气质量为“优良”的有95,85,77,67,72,92共6天,故B不正确;;从4日到9日,空气质量越来越好,,故C正确;这12天的指数值的平均值为110,故D不正确.故选C10、B【解析】利用方差的定义即可解得.【详解】由方差的定义,,则,所以数据的方差为:.故选:B11、B【解析】根据点关于坐标轴对称的性质,结合空间向量夹角公式进行求解即可.【详解】因为点关于x轴的对称点为,所以,设平面OAB的一个法向量为,则得所以,令,得,所以又z轴的一个方向向量为,设z轴与平面OAB所成的线面角为,则,所以所求的线面角为,故选:B12、A【解析】由程序图可得,,再分段求解函数的值域,即可求解【详解】由程序图可得,当时,,,当时,,,综上所述,的取值范围为,故选:A二、填空题:本题共4小题,每小题5分,共20分。13、【解析】由题可得有两个不同正根,利用分离参数法得到.令,,只需和有两个交点,利用导数研究的单调性与极值,数形结合即得.【详解】∵的定义域为,,要使函数有两个极值点,只需有两个不同正根,并且在的两侧的单调性相反,在的两侧的单调性相反,由得,,令,,要使函数有两个极值点,只需和有两个交点,∵,令得:0<x<1;令得:x>1;所以在上单调递增,在上单调递减,当时,;当时,;作出和的图像如图,所以,即,即实数a的取值范围为.故答案为:14、【解析】利用正四面体内任一点可将正四面体分成四个小四面体,令它们的高分别为,由体积相等即可求得;【详解】正三角形边长为a,则该三角形内任一点到三边的距离分别为,即有:,解得同理,棱长为a的正四面体内,任一点到其四个面的距离分别为,即有:,解得故答案为:【点睛】本题考查了利用空间几何体的等体积法求高的和为定值,属于简单题;15、【解析】利用插空法计算出正确答案.【详解】先排,形成个空位,然后将排入,所以符合题意的四位数的个数为.故答案为:16、【解析】根据空间向量垂直得到等量关系,求出答案.【详解】由题意得:,解得:故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)证明见解析.【解析】(1)求出的直线方程,结合椭圆方程可求的坐标,从而可求的直线方程;(2)设,直线(或),则可用两点的坐标表示或,联立直线的方程和椭圆的方程,消元后利用韦达定理可化简前者从而得到要证明的结论【详解】(1)若B为椭圆的上顶点,则.又过点,故直线由可得,解得即点,又,故直线;(2)设,方法一:设直线,代入椭圆方程可得:所以,故,又均不为0,故,即为定值方法二:设直线,代入椭圆方程可得:所以所以,即,所以,即为定值方法三:设直线,代入椭圆方程可得:所以,所以所以,把代入得方法四:设直线,代入椭圆的方程可得,则所以.因为,代入得.【点睛】思路点睛:直线与圆锥曲线的位置关系中的定点、定值、最值问题,一般可通过联立方程组并消元得到关于或的一元二次方程,再把要求解的目标代数式化为关于两个的交点横坐标或纵坐标的关系式,该关系中含有或,最后利用韦达定理把关系式转化为若干变量的方程(或函数),从而可求定点、定值、最值问题.18、(1);(2)证明见解析.【解析】(1)由点在抛物线上可得出,再利用三角形的面积公式可得出关于的等式,解出正数的值,即可得出抛物线的标准方程;(2)设点、,利用斜率公式结合已知条件可得出的值,分析可知直线不与轴垂直,可设直线的方程为,将该直线方程与抛物线的方程联立,利用韦达定理求出的值,即可得出结论.【小问1详解】解:抛物线的焦点为,由已知可得,则,,,解得,因此,抛物线的方程为.【小问2详解】证明:设点、,则,可得.若直线轴,则该直线与抛物线只有一个交点,不合乎题意.设直线的方程为,联立,可得,由韦达定理可得,可得,此时,合乎题意.所以,直线的方程为,故直线恒过定点.19、(1)直线l的普通方程,曲线C的直角坐标方程(2)【解析】(1)直接利用转换关系,在参数方程、极坐标方程和直角坐标方程之间进行转换;(2)利用一元二次方程根和系数关系式的应用求出结果【小问1详解】解:直线的参数方程为为参数),转换为直角坐标方程,曲线的极坐标方程为,根据,转换为直角坐标方程为;小问2详解】直线转换为参数方程为为参数),代入,得到,所以,,所以20、(1),(2)证明见解析【解析】(1)根据可得,从而可得;(2)利用错位相减法可得,从而可得,又,即可证明不等式成立.【小问1详解】解:∵,∴当时,,当时,,∴,经检验,也符合,∴,;【小问2详解】证明:因为,∴,∴∴,又∵,∴,所以21、(1)见解析(2)【解析】本试题主要是考查了线面平行的判定和三棱锥体积的求解的综合问题.培养了同学们的推理论证能力和计算能力(1)根据已知的条件关键是分析出EF//PA,利用线面平行判定定理得到(2)根据上一问中的结论可知PM⊥平面ABCD.然后利用转换顶点的思想求解棱锥的体积解:(Ⅰ)证明:连接AC,则F是AC的中点,E为PC的中点,故在CPA中,EF//PA,且PA平面PAD,EF平面PAD,∴EF//平面PAD(Ⅱ)取AD的中点M,连接PM,∵PA=PD,∴PM⊥AD,又平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,∴PM⊥平面ABCD.在直角PAM中,求得PM=,∴PM=22、(1)(2)(3)【解析】(1)由题意直接写出基本事件即可得出答案.(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 湖北省襄阳市谷城县石花镇2025-2026学年八年级上学期期末考试生物试题(无答案)
- 养老院入住老人医疗护理技能培训制度
- 人力资源制度
- 企业内部保密责任制度
- 老年终末期认知下降症状群管理方案
- 老年终末期疼痛评估的全程管理策略
- 科技创新能力培养实施细则
- 创新公共服务提供方式满足多样需求
- 2025年商洛市商州富兴学校教师招聘笔试真题
- 地毯整经工安全生产意识知识考核试卷含答案
- 重庆市2026年高一(上)期末联合检测(康德卷)化学+答案
- 2026年湖南郴州市百福控股集团有限公司招聘9人备考考试题库及答案解析
- 绿电直连政策及新能源就近消纳项目电价机制分析
- 铁路除草作业方案范本
- 2026届江苏省常州市生物高一第一学期期末检测试题含解析
- 2026年及未来5年市场数据中国高温工业热泵行业市场运行态势与投资战略咨询报告
- 教培机构排课制度规范
- 2026年检视问题清单与整改措施(2篇)
- 认识时间(课件)二年级下册数学人教版
- 2026届陕晋青宁四省高三语文二次联考(天一大联考)作文题目解析及范文:“避”的抉择价值判断与人生担当
- 【四年级】【数学】【秋季上】期末家长会:数海引航爱伴成长【课件】
评论
0/150
提交评论