安徽省蒙城二中2026届高一上数学期末监测模拟试题含解析_第1页
安徽省蒙城二中2026届高一上数学期末监测模拟试题含解析_第2页
安徽省蒙城二中2026届高一上数学期末监测模拟试题含解析_第3页
安徽省蒙城二中2026届高一上数学期末监测模拟试题含解析_第4页
安徽省蒙城二中2026届高一上数学期末监测模拟试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

付费下载

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

安徽省蒙城二中2026届高一上数学期末监测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.下列函数,在其定义域内既是奇函数又是增函数的是A. B.C. D.2.方程的实数根大约所在的区间是A. B.C. D.3.二次函数中,,则函数的零点个数是A.个 B.个C.个 D.无法确定4.设,,,则有()A. B.C. D.5.已知函数为偶函数,且在上单调递减,则的解集为A. B.C. D.6.若直线与直线垂直,则()A.6 B.4C. D.7.设P是△ABC所在平面内的一点,,则A. B.C. D.8.《九章算术》成书于公元一世纪,是中国古代乃至东方的第一部自成体系的数学专著.书中记载这样一个问题“今有宛田,下周三十步,径十六步.问为田几何?”(一步=1.5米)意思是现有扇形田,弧长为45米,直径为24米,那么扇形田的面积为A.135平方米 B.270平方米C.540平方米 D.1080平方米9.已知函数的定义域为,集合,若中的最小元素为2,则实数的取值范围是:A. B.C. D.10..已知集合,集合,则()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知定义在区间上的奇函数满足:,且当时,,则____________.12.已知一组样本数据x1,x2,…,x10,且++…+=2020,平均数,则该组数据的标准差为_________.13.的解集为_____________________________________14.已知函数,则______,若,则______.15.定义:如果函数在定义域内给定区间上存在,满足,则称函数是上的“平均值函数”,是它的一个均值点.若函数是上的平均值函数,则实数的取值范围是____16.已知两点,,以线段为直径的圆经过原点,则该圆的标准方程为____________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数.(1)若,求的最大值;(2)若,求关于不等式的解集.18.某工厂某种航空产品的年固定成本为万元,每生产件,需另投入成本为,当年产量不足件时,(万元).当年产量不小于件时,(万元).每件商品售价为万元.通过市场分析,该厂生产的商品能全部售完.(1)写出年利润(万元)关于年产量(件)的函数解析式;(2)年产量为多少件时,该厂在这一商品的生产中所获利润最大?19.用定义法证明函数在上单调递增20.定义在上的函数,如果满足:对任意,存在常数,都有成立,则称是上的有界函数,其中称为函数的一个上界.已知函数,.(1)若函数为奇函数,求实数的值;(2)在(1)的条件下,求函数在区间上的所有上界构成的集合;(3)若函数在上是以为上界有界函数,求实数的取值范围.21.设函数f(x)=sin(2x+φ)(-π<φ<0),y=f(x)图象的一条对称轴是直线x=,(1)求φ;(2)求函数y=f(x)的单调增区间

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】由幂函数,指数函数与对数函数的性质可得【详解】解:根据题意,依次分析选项:对于A,,其定义域为R,在R上既是奇函数又是增函数,符合题意;对于B,,是对数函数,不是奇函数,不符合题意;对于C,,为指数函数,不为奇函数;对于D,,为反比例函数,其定义域为,在其定义域上不是增函数,不符合题意;故选A【点睛】本题考查函数的奇偶性与单调性,是基础题,掌握幂函数,指数函数与对数函数的性质是解题关键2、C【解析】方程的根转化为函数的零点,判断函数的连续性以及单调性,然后利用零点存在性定理推出结果即可【详解】方程的根就是的零点,函数是连续函数,是增函数,又,,所以,方程根属于故选C【点睛】本题考查函数零点存在性定理的应用,考查计算能力3、C【解析】计算得出的符号,由此可得出结论.【详解】由已知条件可得,因此,函数的零点个数为.故选:C.4、C【解析】利用和差公式,二倍角公式等化简,再利用正弦函数的单调性比较大小.【详解】,,,因为函数在上是增函数,,所以由三角函数线知:,,因为,所以,所以故选:C.5、B【解析】根据为偶函数,可得;根据在上递减得;然后解一元二次不等式可得【详解】解:为偶函数,所以,即,,由在上单调递减,所以,,可化为,即,解得或故选:【点睛】本题主要考查奇偶性与单调性的应用以及一元二次不等式的解法,还考查了运算求解的能力,属于中档题.6、A【解析】由两条直线垂直的条件可得答案.【详解】由题意可知,即故选:A.7、B【解析】由向量的加减法运算化简即可得解.【详解】,移项得【点睛】本题主要考查了向量的加减法运算,属于基础题.8、B【解析】直接利用扇形面积计算得到答案.【详解】根据扇形的面积公式,计算扇形田的面积为Slr45270(平方米).故选:B.【点睛】本题考查了扇形面积,属于简单题.9、C【解析】本题首先可以求出集合以及集合中所包含的元素,然后通过交集的相关性质以及中的最小元素为2即可列出不等式组,最后求出实数的取值范围【详解】函数,,或者,所以集合,,,,所以集合,因为中的最小元素为2,所以,解得,故选C【点睛】本题考查了集合的相关性质,主要考查了交集的相关性质、函数的定义域、带绝对值的不等式的求法,考查了推理能力与计算能力,考查了化归与转化思想,提升了学生的逻辑思维,是中档题10、A【解析】先将分别变形,然后根据数值的奇偶判断出的关系,由此求解出的结果.【详解】因为,所以,所以;又因为,所以,所以,又因为表示所有的奇数,表示部分奇数,所以;所以,故选:A.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】由函数已知的奇偶性可得、,再由对称性进而可得周期性得解.【详解】因为在区间上是奇函数,所以,,,得,因为,,所以的周期为..故答案为:.12、9【解析】根据题意,利用方差公式计算可得数据的方差,进而利用标准差公式可得答案【详解】根据题意,一组样本数据,且,平均数,则其方差,则其标准差,故答案为:9.13、【解析】由题得,解不等式得不等式的解集.【详解】由题得,所以.所以不等式的解集为.故答案为【点睛】本题主要考查正切函数的图像和性质,考查三角不等式的解法,意在考查学生对这些知识的掌握水平和分析推理能力.14、①.15②.-3或【解析】根据分段函数直接由内到外计算即可求,当时,分段讨论即可求解.【详解】,,时,若,则,解得或(舍去),若,则,解得,综上,或,故答案为:15;-3或【点睛】本题主要考查了分段函数的解析式,已知自变量求函数值,已知函数值求自变量,属于容易题.15、##,##【解析】根据题意,方程,即在内有实数根,若函数在内有零点.首先满足,解得,或.对称轴为.对分类讨论即可得出【详解】解:根据题意,若函数是,上的平均值函数,则方程,即在内有实数根,若函数在内有零点则,解得,或(1),.对称轴:①时,,,(1),因此此时函数在内一定有零点.满足条件②时,,由于(1),因此函数在内不可能有零点,舍去综上可得:实数的取值范围是,故答案为:,16、【解析】由以线段为直径的圆经过原点,则可得,求得参数的值,然后由中点坐标公式求所求圆的圆心,用两点距离公式求所求圆的直径,再运算即可.【详解】解:由题意有,,又以线段为直径的圆经过原点,则,则,解得,即,则的中点坐标为,即为,又,即该圆的标准方程为,故答案为.【点睛】本题考查了圆的性质及以两定点为直径的圆的方程的求法,重点考查了运算能力,属基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)答案见解析【解析】(1)由题得,利用基本不等式可求;(2)不等式即,讨论的大小可求解.【小问1详解】由,得.,,即(当且仅当时“”成立.).故的最大值为;【小问2详解】,即.当时,即时,不等式的解集为当时,即时,不等式的解集为;当时,即时,不等式的解集为.综上,当时,不等式的解集为;当时,不等式的解集为;当时,不等式的解集为.18、(1);(2)年产量为件时,利润最大为万元.【解析】(1)实际应用题首先要根据题意,建立数学模型,即建立函数关系式,这里,要用分类讨论的思想,建立分段函数表达式;(2)根据建立的函数关系解模,即运用数学知识求函数的最值,这里第一段,运用的是二次函数求最值,而第二段,则可运用基本不等式求最值,然后再作比较,确定最终的结果,最后要回到实际问题作答.试题解析:解:(1)当时,;当时,,所以.(2)当时,此时,当时,取得最大值万元.当时,此时,当时,即时,取得最大值万元,所以年产量为件时,利润最大为万元.考点:函数、不等式的实际应用.19、详见解析【解析】根据题意,将函数的解析式变形有,设,由作差法分析可得结论详解】证明:,设,则,又由,则,,,则,则函数上单调递增【点睛】本题考查函数单调性的证明,注意定义法证明函数单调性的步骤,属于基础题.20、(1);(2);(3).【解析】(1)由奇函数的定义,代入即可得出结果.(2)由复合函数的单调性,可得在区间上单调递增,进而求出值域,即可得出结果.(3)由题意可得在上恒成立,即在上恒成立,利用函数单调性的定义证明单调性,再求出值域,即可求出结果.【详解】(1)因函数为奇函数,所以,即,即,得,而当时不合题意,故(2)由(1)得:,而,易知在区间上单调递增,所以函数在区间上单调递增,所以函数在区间上的值域为,所以,故函数在区间上的所有上界构成集合为.(3)由题意知,在上恒成立.,.在上恒成立.设

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论