山西省晋中市平遥县二中2026届数学高一上期末综合测试模拟试题含解析_第1页
山西省晋中市平遥县二中2026届数学高一上期末综合测试模拟试题含解析_第2页
山西省晋中市平遥县二中2026届数学高一上期末综合测试模拟试题含解析_第3页
山西省晋中市平遥县二中2026届数学高一上期末综合测试模拟试题含解析_第4页
山西省晋中市平遥县二中2026届数学高一上期末综合测试模拟试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山西省晋中市平遥县二中2026届数学高一上期末综合测试模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.用长度为24米的材料围成一矩形场地,中间加两道隔墙(如图),要使矩形的面积最大,则隔墙的长度为A.3米 B.4米C.6米 D.12米2.一个扇形的弧长为6,面积为6,则这个扇形的圆心角是()A.1 B.2C.3 D.43.定义运算,若函数,则的值域是()A. B.C. D.4.命题,一元二次方程有实根,则()A.,一元二次方程没有实根B.,一元二次方程没有实根C.,一元二次方程有实根D.,一元二次方程有实根5.已知为偶函数,当时,,当时,,则满足不等式的整数的个数为()A.4 B.6C.8 D.106.命题,则命题p的否定是()A. B.C. D.7.如图,正方形ABCD的边长为2,动点E从A开始沿A→B→C的方向以2个单位长/秒的速度运动到C点停止,同时动点F从点C开始沿CD边以1个单位长/秒的速度运动到D点停止,则的面积y与运动时间x(秒)之间的函数图像大致形状是()A. B.C. D.8.为了得到函数的图象,只需将函数的图象A.向左平行移动个单位 B.向左平行移动个单位C.向右平行移动个单位 D.向右平行移动个单位9.若是第二象限角,则点在()A.第一象限 B.第二象限C.第三象限 D.第四象限10.已知函数,则的图像大致是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数,若关于的不等式在[0,1]上有解,则实数的取值范围为______12.在中,,,则面积的最大值为___________.13.函数的单调递增区间为______.14.2021年10月16日0时23分,搭载神舟十三号载人飞船的长征二号F遥十三运载火箭,在酒泉卫星发射中心点火升空.约582秒后,载人飞船与火箭成功分离,进入预定轨道,发射取得圆满成功.此次航天飞行任务中,火箭起到了非常重要的作用.火箭质量是箭体质量与燃料质量的和,在不考虑空气阻力的条件下,燃料质量不同的火箭的最大速度之差与火箭质量的自然对数之差成正比.已知某火箭的箭体质量为mkg,当燃料质量为mkg时,该火箭的最大速度为2ln2km/s,当燃料质量为时,该火箭最大速度为2km/s.若该火箭最大速度达到第一宇宙速度7.9km/s,则燃料质量是箭体质量的_______________倍.(参考数据:)15.已知,,则_________.16.已知函数,,那么函数图象与函数的图象的交点共有__________个三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.冰雪装备器材产业是冰雪产业重要组成部分,加快发展冰雪装备器材产业,对筹办好北京2022年冬奥会、冬残奥会,带动我国3亿人参与冰雪运动具有重要的支撑作用.某冰雪装备器材生产企业,生产某种产品的年固定成本为300万元,每生产千件,需另投入成本(万元).当年产量低于60千件时,;当年产量不低于60千件时,.每千件产品售价为60万元,且生产的产品能全部售完.(1)写出年利润(万元)关于年产量(千件)的函数解析式;(2)当年产量为多少千件时,企业所获得利润最大?最大利润是多少?18.已知.(1)求的值;(2)求的值.19.素有“天府之国”美称的四川省成都市,属于亚热带季风性湿润气候.据成都市气象局多年的统计资料显示,成都市从1月份到12月份的平均温(℃)与月份数(月)近似满足函数,从1月份到7月份的月平均气温的散点图如下图所示,且1月份和7月份的平均气温分别为成都全年的最低和最高的月平均气温.(1)求月平均气温(℃)与月份数(月)的函数解析式;(2)推算出成都全年月平均气温低于但又不低于的是哪些月份.20.已知函数.(1)若函数在上至少有一个零点,求的取值范围;(2)若函数在上最大值为3,求的值.21.设两个非零向量与不共线,(1)若,,,求证:A,B,D三点共线;(2)试确定实数k,使和共线

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】主要考查二次函数模型的应用解:设隔墙长度为,则矩形另一边长为=12-2,矩形面积为=(12-2)=,0<<6,所以=3时,矩形面积最大,故选A2、C【解析】根据扇形的弧长公式和扇形的面积公式,列出方程组,即可求解,得到答案.【详解】设扇形所在圆的半径为,由扇形的弧长为6,面积为6,可得,解得,即扇形的圆心角为.故选C.【点睛】本题主要考查了扇形的弧长公式,以及扇形的面积公式的应用,其中解答中熟练应用扇形的弧长公式和扇形的面积公式,准确运算是解答的关键,着重考查了推理与运算能力,属于基础题.3、C【解析】由定义可得,结合指数函数性质即可求出.【详解】由定义可得,当时,,则,当时,,则,综上,的值域是.故选:C.4、B【解析】根据全称命题的否定为特称命题可得出.【详解】因为全称命题的否定为特称命题,所以,一元二次方程没有实根.故选:B.5、C【解析】由时的解析式,可先求得不等式的解集.再根据偶函数性质,即可求得整个定义域内满足不等式的解集,即可确定整数解的个数.【详解】当时,,解得,所以;当时,,解得,所以.因为为偶函数,所以不等式的解集为.故整数的个数为8.故选:C【点睛】本题考查了不等式的解法,偶函数性质的应用,属于基础题.6、A【解析】全称命题的否定是特称命题,并将结论加以否定.【详解】因为命题,所以命题p的否定是,故选:A.7、A【解析】先求出时,的面积y的解析式,再根据二次函数的图象分析判断得解.详解】由题得时,,所以的面积y,它图象是抛物线的一部分,且含有对称轴.故选:A【点睛】本题主要考查函数的解析式的求法,考查二次函数的图象和性质,意在考查学生对这些知识的理解掌握水平.8、B【解析】由函数y=Asin(ωx+φ)的图象变换规律,可得结论【详解】∵将函数y=sin(2x)的图象向左平行移动个单位得到sin[2(x)]=,∴要得到函数y=sin2x的图象,只需将函数y=sin(2x)的图象向左平行移动个单位故选B【点睛】本题主要考查了函数y=Asin(ωx+φ)图象变换规律的简单应用,属于基础题9、D【解析】先分析得到,即得点所在的象限.【详解】因为是第二象限角,所以,所以点在第四象限,故选D【点睛】本题主要考查三角函数的象限符合,意在考查学生对该知识的理解掌握水平,属于基础题.10、C【解析】判断函数的奇偶性,再利用时,函数值的符号即可求解.【详解】由,则,所以函数为奇函数,排除B、D.当,则,所以,,所以,排除A.故选:C二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】不等式在[0,1]上有解等价于,令,则.【详解】由在[0,1]上有解,可得,即令,则,因为,所以,则当,即时,,即,故实数的取值范围是故答案为【点睛】利用导数研究不等式恒成立或存在型问题,首先要构造函数,利用导数研究函数的单调性,求出最值,进而得出相应的含参不等式,从而求出参数的取值范围;也可分离变量,构造函数,直接把问题转化为函数的最值问题.12、【解析】利用诱导公式,两角和与差余弦公式、同角间的三角函数关系得,得均为锐角,设边上的高为,由表示出,利用基本不等式求得的最大值,即可得三角形面积最大值【详解】中,,所以,整理得,即,所以均为锐角,作于,如图,记,则,,所以,,当且仅当即时等号成立.所以,的最大值为故答案为:13、【解析】首先将函数拆分成内外层函数,根据复合函数单调性的判断方法求解.【详解】函数分成内外层函数,是减函数,根据“同增异减”的判断方法可知求函数的单调递增区间,需求内层函数的减区间,函数的对称轴是,的减区间是,所以函数的单调递增区间为.故答案为:【点睛】本题考查复合函数的单调性,意在考查基本的判断方法,属于基础题型,判断复合函数的单调性根据“同增异减”的方法判断,当内外层单调性一致时为增函数,当内外层函数单调性不一致时为减函数,有时还需注意定义域.14、51【解析】设燃料质量不同的火箭的最大速度之差与火箭质量的自然对数之差成正比的比例系数为k,根据条件列方程求出k值,再设当该火箭最大速度达到第--宇宙速度7.9km/s时,燃料质量是箭体质量的a倍,根据题中数据再列方程可得a值.【详解】设燃料质量不同的火箭的最大速度之差与火箭质量的自然对数之差成正比的比例系数为k,则,解得,设当该火箭最大速度达到第一宇宙速度7.9km/s时,燃料质量是箭体质量的a倍,则,得,则燃料质量是箭体质量的51倍故答案为:51.15、【解析】利用两角差的正切公式可计算出的值.【详解】由两角差的正切公式得.故答案为:.【点睛】本题考查利用两角差的正切公式求值,解题的关键就是弄清角与角之间的关系,考查计算能力,属于基础题.16、8【解析】在同一坐标系中,分别画出函数,及函数的图像,如图所示:由图可知,两个函数的图象共有8个交点故答案为8点睛:解决函数与方程问题的基本思想就是数形结合思想和等价转化思想,运用函数图象来研究函数零点或方程解的个数,在画函数图象时,切忌随手一画,可利用零点存在定理,结合函数图象的性质,如单调性,奇偶性,将问题简化.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)当该企业年产量为50千件时,所获得利润最大,最大利润是950万元【解析】(1)根据题意,分段写出年利润的表达式即可;(2)根据年利润的解析式,分段求出两种情况下的最大利润值,比较大小,可得答案.【小问1详解】当时,;当时,.所以;【小问2详解】当时,.当时,取得最大值,且最大值为950.当时,当且仅当时,等号成立.因为,所以当该企业年产量为50千件时,所获得利润最大,最大利润是950万元.18、(1);(2)【解析】(1)根据正切的差角公式求得,再利用正切的二倍角公式可求得答案;(2)根据同角三角函数的关系和正弦,余弦的二倍角公式,代入可得答案【详解】(1)因为,所以,即,解得,所以,所以,(2)19、(1).(2)3月、4月、9月、10月【解析】(1)利用五点法求出函数解析式;(2)解不等式可得结论【详解】(1)由题意,,,,又,而,∴∴(2)由,解得或或,又,∴3,4,9,10∴全年月平均气温低于但又不低于的是3月、4月、9月、10月【点睛】方法点睛:本题三角函数应用,解题关键是根据已知函数模型求出函数解析式,掌握五点法是解题基础,然后根据函数解析式列式(方程或不等式)计算求解20、(1);(2)或.【解析】(1)由函数在至少有一个零点,方程至少有一个实数根,,解出即可;(2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论