版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届甘肃省兰州市兰州第一中学高一数学第一学期期末复习检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知,是第三象限角,则的值为()A. B.C. D.2.已知点,,则直线的倾斜角为()A. B.C. D.3.中国高速铁路技术世界领先,高速列车运行时不仅速度比普通列车快而且噪声更小.我们用声强I(单位:W/m2)表示声音在传播途径中每1平方米面积上声能流密度,声强级L1(单位:dB)与声强I的函数关系式为:.若普通列车的声强级是95dB,高速列车的声强级是45dB,则普通列车的声强是高速列车声强的()A.倍 B.倍C.倍 D.倍4.在直角梯形中,,,,分别为,的中点,以为圆心,为半径的圆交于,点在弧上运动(如图).若,其中,,则的取值范围是A. B.C. D.5.用二分法求方程的近似解,求得的部分函数值数据如下表所示:121.51.6251.751.8751.8125-63-2.625-1.459-0.141.34180.5793则当精确度为0.1时,方程的近似解可取为A. B.C. D.6.菱形ABCD在平面α内,PC⊥α,则PA与BD的位置关系是()A.平行 B.相交但不垂直C.垂直相交 D.异面且垂直7.设函数与的图象的交点为,则所在的区间为()A B.C. D.8.方程的实数根所在的区间是()A. B.C. D.9.若,则的最小值为()A.4 B.3C.2 D.110.函数的部分图象如图所示,将函数的图象向左平移个单位长度后得到的图象,则下列说法正确的是()A.函数为奇函数B.函数的最小正周期为C.函数的图象的对称轴为直线D.函数的单调递增区间为二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数=,若对任意的都有成立,则实数的取值范围是______12.已知直线,则与间的距离为___________.13.设函数(e为自然对数的底数,a为常数),若为偶函数,则实数______;若对,恒成立,则实数a的取值范围是______14.下面四个命题:①定义域上单调递增;②若锐角,满足,则;③是定义在上的偶函数,且在上是增函数,若,则;④函数的一个对称中心是;其中真命题的序号为______.15.函数的定义域为_________16.已知半径为3的扇形面积为,则这个扇形的圆心角为________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.定义在上的函数,如果满足:对任意,存在常数,都有成立,则称是上的有界函数,其中称为函数的一个上界.已知函数,.(1)若函数为奇函数,求实数的值;(2)在(1)的条件下,求函数在区间上的所有上界构成的集合;(3)若函数在上是以为上界有界函数,求实数的取值范围.18.已知圆经过两点,且圆心在直线上.(1)求圆的标准方程;(2)若直线过点,且被圆截得的弦长为,求直线的方程.19.已知函数f(x)=(1)求f(x)的最小正周期;(2)当x∈[-π6,20.已知函数.(1)判断在上的单调性,并证明你的结论;(2)是否存在,使得是奇函数?若存在,求出所有的值;若不存在,请说明理由.21.若函数的自变量的取值范围为时,函数值的取值范围恰为,就称区间为的一个“和谐区间”.(1)先判断“函数没有“和谐区间”是否正确,再写出函数“和谐区间”;(2)若是定义在上的奇函数,当时,.(i)求的“和谐区间”;(ii)若函数的图象是在定义域内所有“和谐区间”上的图象,是否存在实数,使集合恰含有个元素,若存在,求出的取值范围;若不存在,请说明理由.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】利用同角三角函数的平方关系求出的值,然后利用两角差的余弦公式求出的值.【详解】为第三象限角,所以,,因此,.故选:A.【点睛】本题考查利用两角差的余弦公式求值,在利用同角三角函数基本关系求值时,要结合角的取值范围确定所求三角函数值的符号,考查计算能力,属于基础题.2、B【解析】由两点求斜率公式可得AB所在直线当斜率,再由斜率等于倾斜角的正切值求解【详解】解:∵直线过点,,∴,设AB的倾斜角为α(0°≤α<180°),则tanα=1,即α=45°故选B【点睛】本题考查直线的倾斜角,考查直线倾斜角与斜率的关系,是基础题3、B【解析】根据函数模型,列出关系式,进而结合对数的运算性质,可求出答案.【详解】普通列车的声强为,高速列车声强为,解:设由题意,则,即,所以,即普通列车的声强是高速列车声强的倍.故选:B.【点睛】本题考查函数模型、对数的运算,属于基础题.4、D【解析】建立如图所示的坐标系,则A(0,0),B(2,0),D(0,1),C(2,2),E(2,1),F(1,1.5),P(cosα,sinα)(0≤α),由λμ得,(cosα,sinα)=λ(2,1)+μ(﹣1,),λ,μ用参数α进行表示,利用辅助角公式化简,即可得出结论【详解】解:建立如图所示的坐标系,则A(0,0),B(2,0),D(0,1),C(2,2),E(2,1),F(1,1.5),P(cosα,sinα)(0≤α),由λμ得,(cosα,sinα)=λ(2,1)+μ(﹣1,)⇒cosα=2λ﹣μ,sinα=λ⇒λ,∴6λ+μ=6()2(sinα+cosα)=2sin()∵,∴sin()∴2sin()∈[2,2],即6λ+μ的取值范围是[2,2]故选D【点睛】本题考查平面向量的坐标运算,考查学生的计算能力,正确利用坐标系是关键.属于中档题5、C【解析】利用零点存在定理和精确度可判断出方程的近似解.【详解】根据表中数据可知,,由精确度为可知,,故方程的一个近似解为,选C.【点睛】不可解方程的近似解应该通过零点存在定理来寻找,零点的寻找依据二分法(即每次取区间的中点,把零点位置精确到原来区间的一半内),最后依据精确度四舍五入,如果最终零点所在区间的端点的近似值相同,则近似值即为所求的近似解.6、D【解析】由菱形ABCD平面内,则对角线,又,可得平面,进而可得,又显然,PA与BD不在同一平面内,可判断其位置关系.【详解】假设PA与BD共面,根据条件点和菱形ABCD都在平面内,这与条件相矛盾.故假设不成立,即PA与BD异面.又在菱形ABCD中,对角线,,,则且,所以平面平面.则,所以PA与BD异面且垂直.故选:D【点睛】本题考查异面直线的判定和垂直关系的证明,属于基础题.7、C【解析】令,则,故的零点在内,因此两函数图象交点在内,故选C.【方法点睛】本题主要考查函数图象的交点与函数零点的关系、零点存在定理的应用,属于中档题.零点存在性定理的条件:(1)利用定理要求函数在区间上是连续不断的曲线;(2)要求;(3)要想判断零点个数还必须结合函数的图象与性质(如单调性、奇偶性).8、B【解析】令,因为,且函数在定义域内单调递增,故方程的解所在的区间是,故选B.9、D【解析】利用“乘1法”即得.【详解】因为,所以,∴,当且仅当时,即时取等号,所以的最小值为1.故选:D.10、D【解析】根据图象得到函数解析式,将函数的图象向左平移个单位长度后得到的图象,可得解析式,分别根据正弦函数的奇偶性、单调性、周期性与对称性,对选项中的结论判断,从而可得结论.【详解】由图象可知,,∴,则.将点的坐标代入中,整理得,∴,即;,∴,∴.∵将函数的图象向左平移个单位长度后得到的图象,∴.,∴既不是奇函数也不是偶函数,故A错误;∴的最小正周期,故B不正确.令,解得,则函数图像的对称轴为直线.故C错误;由,可得,∴函数的单调递增区间为.故D正确;故选:D.【点睛】关键点睛:本题主要考查三角函数的图象与性质,熟记正弦函数的奇偶性、单调区间、最小正周期与对称轴是解决本题的关键.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】转化为对任意的都有,再分类讨论求出最值,代入解不等式即可得解.【详解】因为=,所以等价于,等价于,所以对任意的都有成立,等价于,(1)当,即时,在上为减函数,,在上为减函数,,所以,解得,结合可得.(2)当,即时,在上为减函数,,在上为减函数,在上为增函数,或,所以且,解得.(3)当,即时,,在上为减函数,,在上为增函数,,所以,解得,结合可知,不合题意.(4)当,即时,在上为减函数,在上为增函数,,在上为增函数,,此时不成立.(5)当时,在上为增函数,,在上为增函数,,所以,解得,结合可知,不合题意.综上所述:.故答案为:12、【解析】根据平行线间距离直接计算.【详解】由已知可得两直线互相平行,故,故答案为:.13、①.1②.【解析】第一空根据偶函数的定义求参数,第二空为恒成立问题,参变分离后转化成求函数最值【详解】由,即,关于恒成立,故恒成立,等价于恒成立令,,,故a的取值范围是故答案为:1,14、②③④【解析】由正切函数的单调性,可以判断①真假;根据正弦函数的单调性,结合诱导公式,可以判断②的真假;根据函数奇偶性与单调性的综合应用,可以判断③的真假;根据正弦型函数的对称性,我们可以判断④的真假,进而得到答案【详解】解:由正切函数的单调性可得①“在定义域上单调递增”为假命题;若锐角、满足,即,即,则,故②为真命题;若是定义在上的偶函数,且在上是增函数,则函数在上为减函数,若,则,则,故③为真命题;由函数则当时,故可得是函数的一个对称中心,故④为真命题;故答案为:②③④【点睛】本题考查的知识点是命题的真假判断与应用,函数单调性的性质,偶函数,正弦函数的对称性,是对函数性质的综合考查,熟练掌握基本初等函数的性质是解答本题的关键15、【解析】根据被开放式大于等于零和对数有意义,解对数不等式得到结果即可.【详解】∵函数∴x>0且,∴∴函数的定义域为故答案为【点睛】本题考查了根据函数的解析式求定义域的应用问题,是基础题目16、【解析】由扇形的面积公式直接求解.【详解】由扇形面积公式,可得圆心角,故答案为:.【点睛】(1)在弧度制下,计算扇形的面积和弧长比在角度制下更方便、简捷(2)求扇形面积的最值应从扇形面积出发,在弧度制下使问题转化为关于α的不等式或利用二次函数求最值的方法确定相应最值.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2);(3).【解析】(1)由奇函数的定义,代入即可得出结果.(2)由复合函数的单调性,可得在区间上单调递增,进而求出值域,即可得出结果.(3)由题意可得在上恒成立,即在上恒成立,利用函数单调性的定义证明单调性,再求出值域,即可求出结果.【详解】(1)因函数为奇函数,所以,即,即,得,而当时不合题意,故(2)由(1)得:,而,易知在区间上单调递增,所以函数在区间上单调递增,所以函数在区间上的值域为,所以,故函数在区间上的所有上界构成集合为.(3)由题意知,在上恒成立.,.在上恒成立.设,,,由得设,,所以在上递减,在上递增,在上的最大值为,在上的最小值为,所以实数的取值范围为.18、(1)(2)或.【解析】(1)设圆的方程为,根据题意列出方程组,求得的值,即可求解;(2)由圆的弦长公式,求得圆心到直线的距离为,分类直线的斜率不存在和斜率存在两种情况讨论,即可求得直线的方程.【小问1详解】解:圆经过两点,且圆心在直线上,设圆的方程为,可得,解得,所以圆的方程为,即.【小问2详解】解:由圆,可得圆心,半径为,因为直线过点,且被圆截得的弦长为,可得,解得,即圆心到直线的距离为,当直线的斜率不存在时,直线的方程为,此时圆心到直线的距离为,符合题意;当直线的斜率存在时,设直线的斜率为,可得直线的方程为,即由圆心到直线的距离为,解得,所以直线的方程为,即,综上可得,所求直线方程为或.19、(1)π(2)x∈-π6,π3时,f(x)【解析】(1)对f(x)化简后得到fx=sin2x-π6【小问1详解】f(x)=所以f(x)的最小正周期为2【小问2详解】当x∈-π故当-π2⩽2x-π6当π2⩽2x-π6⩽当2x-π6∈所以-32⩽f(x)⩽120、(1)减函数,证明见解析;(2),理由见解析【解析】(1)由单调性定义判断;(2)根据奇函数的性质由求得,然后再由奇函数定义验证【详解】(1)是上的减函数设,则,所以,,即,,所以,所以是上的减函数(2)若是奇函数,则,,时,,所以,所以为奇函数所以时,函数为奇函数21、(1)正确,;(2)(i)和,(ii)存在符合题意,理由见解析.【解析】(1)根据和谐区间的定义判断两个函数即可;(2)(i)根据是奇函数求出的解析式,再利用“
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 钦州2025年广西钦州市浦北县县城学校选调教师70人笔试历年参考题库附带答案详解
- 邯郸2025年河北邯郸丛台区招聘教师320人笔试历年参考题库附带答案详解
- 红河2025年云南红河建水县紧密型医共体第三批编外工作人员招聘24人笔试历年参考题库附带答案详解
- 成都四川成都医学院第一附属医院招聘合同制人员5人笔试历年参考题库附带答案详解
- 天津2025年天津电子信息职业技术学院招聘笔试历年参考题库附带答案详解
- 吉安2025年江西吉安市安福县事业单位高层次人才招聘37人笔试历年参考题库附带答案详解
- 南昌2025年江西南昌市红谷滩区招聘幼儿园-特殊教育教师68人笔试历年参考题库附带答案详解
- 北京2025年北京市延庆区卫生健康委员会所属事业单位招聘医务人员笔试历年参考题库附带答案详解
- 企业服务类采购制度
- 耐药菌感染的临床营养干预策略
- 2025年江苏省无锡市梁溪区八下英语期末统考模拟试题含答案
- GB/T 42186-2022医学检验生物样本冷链物流运作规范
- 江苏省南通市2024-2025学年高一上学期1月期末考试数学试题
- T/CA 105-2019手机壳套通用规范
- 以真育责:小学生责任教育在求真理念下的探索与实践
- 2019营口天成消防JB-TB-TC5120 火灾报警控制器(联动型)安装使用说明书
- 部编版语文六年级上册第一单元综合素质测评B卷含答案
- 买卖肉合同样本
- 2025届高考语文复习:以《百合花》为例掌握小说考点
- 面向对象系统分析与设计(MOOC版)全套教学课件
- 2024-2025学年江苏省镇江市六年级语文上学期期末真题重组卷
评论
0/150
提交评论