版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
安徽省合肥市2026届数学高二上期末质量跟踪监视模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若数列的前n项和(n∈N*),则=()A.20 B.30C.40 D.502.将5名北京冬奥会志愿者分配到花样滑冰、短道速滑、冰球和冰壶4个项目进行培训,每名志愿者只分配到1个项目,每个项目至少分配1名志愿者,则不同的分配方案共有()A.60种 B.120种C.240种 D.480种3.若圆C:上有到的距离为1的点,则实数m的取值范围为()A. B.C. D.4.已知双曲线,其渐近线方程为,则a的值为()A. B.C. D.25.若,则复数在复平面内对应的点在()A.曲线上 B.曲线上C.直线上 D.直线上6.公比为的等比数列,其前项和为,前项积为,满足,.则下列结论正确的是()A.的最大值为B.C.最大值为D.7.北京天坛的圜丘坛为古代祭天的场所,分上、中、下三层,上层中心有一块圆形石板(称为天心石),环绕天心石砌9块扇面形石板构成第一环,向外每环依次增加9块,下一层的第一环比上一层的最后一环多9块,向外每环依次也增加9块,已知每层环数相同,且下层比中层多729块,则三层共有扇面形石板(不含天心石)()A.3699块 B.3474块C.3402块 D.3339块8.某双曲线的一条渐近方程为,且焦点为,则该双曲线的方程是()A. B.C. D.9.点在圆上,点在直线上,则的最小值是()A. B.C. D.10.《张邱建算经》记载:今有女子不善织布,逐日织布同数递减,初日织五尺,末一日织一尺,计织三十日,问第11日到第20日这10日共织布()A.30尺 B.40尺C.6尺 D.60尺11.“”是“方程表示椭圆”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件12.展开式的第项为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若复数满足,则_____14.与直线平行,且距离为的直线方程为______15.已知函数在处有极值2,则______.16.已知点在抛物线上,那么点到点的距离与点到抛物线焦点距离之和取得最小值时,点的坐标为______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)设曲线在点(1,0)处的切线方程为.(1)求a,b的值;(2)求证:;(3)当,求a的取值范围.18.(12分)已知抛物线的焦点为,点在第一象限且为抛物线上一点,点在点右侧,且△恰为等边三角形(1)求抛物线的方程;(2)若直线与交于两点,向量的夹角为(其中为坐标原点),求实数的取值范围.19.(12分)已知椭圆的长轴在轴上,长轴长为4,离心率为,(1)求椭圆的标准方程,并指出它的短轴长和焦距.(2)直线与椭圆交于两点,求两点的距离.20.(12分)曲线与曲线在第一象限的交点为.曲线是()和()组成的封闭图形.曲线与轴的左交点为、右交点为.(1)设曲线与曲线具有相同的一个焦点,求线段的方程;(2)在(1)的条件下,曲线上存在多少个点,使得,请说明理由.(3)设过原点的直线与以为圆心的圆相切,其中圆的半径小于1,切点为.直线与曲线在第一象限的两个交点为..当对任意直线恒成立,求的值.21.(12分)已知三条直线:,:,:(是常数),.(1)若,,相交于一点,求的值;(2)若,,不能围成一个三角形,求的值:(3)若,,能围成一个直角三角形,求的值.22.(10分)已知函数(Ⅰ)若的图象在点处的切线与轴负半轴有公共点,求的取值范围;(Ⅱ)当时,求的最值
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】由前项和公式直接作差可得.【详解】数列的前n项和(n∈N*),所以.故选:B.2、C【解析】先确定有一个项目中分配2名志愿者,其余各项目中分配1名志愿者,然后利用组合,排列,乘法原理求得.【详解】根据题意,有一个项目中分配2名志愿者,其余各项目中分配1名志愿者,可以先从5名志愿者中任选2人,组成一个小组,有种选法;然后连同其余三人,看成四个元素,四个项目看成四个不同的位置,四个不同的元素在四个不同的位置的排列方法数有4!种,根据乘法原理,完成这件事,共有种不同的分配方案,故选:C.【点睛】本题考查排列组合的应用问题,属基础题,关键是首先确定人数的分配情况,然后利用先选后排思想求解.3、C【解析】利用圆与圆的位置关系进行求解即可.【详解】将圆C的方程化为标准方程得,所以.因为圆C上有到的距离为1的点,所以圆C与圆:有公共点,所以因为,所以,解得,故选:C4、A【解析】由双曲线方程,根据其渐近线方程有,求参数值即可.【详解】由渐近线,结合双曲线方程,∴,可得.故选:A.5、B【解析】根据复数的除法运算,先化简,进而求出,再由复数的几何意义,即可得出结果.【详解】因为,所以,因此复数在复平面内对应的点为,可知其在曲线上.故选:B6、A【解析】根据已知条件,判断出,即可判断选项D,再根据等比数列的性质,判断,,由此判断出选项A,B,C.【详解】根据题意,等比数列满足条件,,,若,则,则,,则,这与已知条件矛盾,所以不符合题意,故选项D错误;因为,,,所以,,,则,,数列前2021项都大于1,从第2022项开始都小于1,因此是数列中的最大值,故选项A正确由等比数列的性质,,故选项B不正确;而,由以上分析可知其无最大值,故C错误;故选:A7、C【解析】第n环天石心块数为,第一层共有n环,则是以9为首项,9为公差的等差数列,设为的前n项和,由题意可得,解方程即可得到n,进一步得到.【详解】设第n环天石心块数为,第一层共有n环,则是以9为首项,9为公差的等差数列,,设为的前n项和,则第一层、第二层、第三层的块数分别为,因为下层比中层多729块,所以,即即,解得,所以.故选:C【点晴】本题主要考查等差数列前n项和有关的计算问题,考查学生数学运算能力,是一道容易题.8、D【解析】设双曲线的方程为,利用焦点为求出的值即可.【详解】因为双曲线的一条渐近方程为,且焦点为,所以可设双曲线的方程为,则,,所以该双曲线方程为.故选:D.9、B【解析】根据题意可知圆心,又由于线外一点到已知直线的垂线段最短,结合点到直线的距离公式,即可求出结果.【详解】由题意可知,圆心,所以圆心到的距离为,所以的最小值为.故选:B.10、A【解析】由题意可知,每日的织布数构成等差数列,由等差数列的求和公式得解.【详解】由题女子织布数成等差数列,设第日织布为,有,所以,故选:A.11、B【解析】方程表示椭圆,可得,解出的范围即可判断出结论.【详解】∵方程表示椭圆,∴解得或,故“”是“方程表示椭圆”的必要不充分条件.故选:B12、B【解析】由展开式的通项公式求解即可【详解】因为,所以展开式的第项为,故选:B二、填空题:本题共4小题,每小题5分,共20分。13、【解析】设,则,利用复数相等,求出,的值,结合复数的模长公式进行计算即可【详解】设,则,则由得,即,则,得,则,故答案为【点睛】本题主要考查复数模长的计算,利用待定系数法,结合复数相等求出复数是解决本题的关键14、或【解析】由题意,设所求直线方程为,根据两平行直线间的距离公式即可求解.【详解】解:由题意,设所求直线方程为,因为直线与直线的距离为,所以,解得或,所以所求直线方程为或,故答案为:或.15、6【解析】根据函数在处有极值2,可得,解方程组即可得解.【详解】解:,因为函数在处有极值2,所以,即,解得,则,故当时,,当时,,所以函数在处有极大值,所以,所以.故答案为:6.16、【解析】由抛物线定义可得,由此可知当为与抛物线的交点时,取得最小值,进而求得点坐标.【详解】由题意得:抛物线焦点为,准线为作,垂直于准线,如下图所示:由抛物线定义知:(当且仅当三点共线时取等号)即的最小值为,此时为与抛物线的交点故答案为【点睛】本题考查抛物线线上的点到焦点的距离与到定点距离之和最小的相关问题的求解,关键是能够熟练应用抛物线定义确定最值取得的位置.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)证明见解析(3)【解析】(1)求导,根据导数的几何意义,令x=1处的切线的斜率等1,结合,即可求得a和b的值;(2)利用(1)的结论,构造函数,求求导数,判断单调性,求出最小值即可证明;(3)根据条件构造函数,求出其导数,分类讨论导数的值的情况,根据单调性,判断函数的最小值情况,即可求得答案.【小问1详解】由题意知:,因为曲线在点(1,0)处的切线方程为,故,即;【小问2详解】证明:由(1)知:,令,则,当时,,单调递减,当时,,单调递增,所以当时,取得极小值,也即最小值,最小值为,故,即成立;【小问3详解】当,即,(),设,(),则,当时,由得,此时,此时在时单调递增,,适合题意;当时,,此时在时单调递增,,适合题意;当时,,此时,此时在时单调递增,,适合题意;当时,,此时在内,,在内,,故,显然时,,不满足当恒成立,综上述:.18、(1)(2)【解析】(1)根据△恰为等边三角形由题意知:得到,再利用抛物线的定义求解;(2)联立,结合韦达定理,根据的夹角为,由求解.【小问1详解】解:由题意知:,由抛物线的定义知:,由,解得,所以抛物线方程为;【小问2详解】设,由,得,则,,则,,因为向量的夹角为,所以,,则,且,所以,解得,所以实数的取值范围.19、(1),短轴长为,焦距为;(2).【解析】(1)由长轴得,再由离心率求得,从而可得后可得椭圆方程;(2)直线方程与椭圆方程联立方程组求得交点坐标后可得距离【详解】(1)由已知:,,故,,则椭圆的方程为:,所以椭圆的短轴长为,焦距为.(2)联立,解得,,所以,,故20、(1)或;(2)一共2个,理由见解析;(3)答案见解析.【解析】(1)先求曲线的焦点,再求点的坐标,分焦点为左焦点或右焦点,求线段的方程;(2)分点在双曲线或是椭圆的曲线上,结合条件,说明点的个数;(3)首先设出直线和圆的方程,利用直线与圆相切,以及直线与曲线相交,分别表示,并计算得到的值.【详解】(1)两个曲线相同的焦点,,解得:,即双曲线方程是,椭圆方程是,焦点坐标是,联立两个曲线,得,,即,当焦点是右焦点时,线段的方程当焦点时左焦点时,,,线段的方程(2),假设点在曲线上单调递增∴所以点不可能在曲线上所以点只可能在曲线上,根据得可以得到当左焦点,,同样这样的使得不存在所以这样的点一共2个(3)设直线方程,圆方程为直线与圆相切,所以,,根据得到补充说明:由于直线的曲线有两个交点,受参数的影响,蕴含着如下关系,∵,当,存在,否则不存在这里可以不需讨论,因为题目前假定直线与曲线有两个交点的大前提,当共焦点时存在不存在.【点睛】关键点点睛:本题考查直线与椭圆和双曲线相交的综合应用,本题的关键是曲线由椭圆和双曲线构成,所以研究曲线上的点时,需分两种情况研究问题.21、(1)(2)或或(3)或【解析】(1)由二条已知直线求交点,代入第三条直线即可;(2)不能围成一个三角形,过二条已知直线的交点,或者与它们平行;(3)由直线互相垂直得,斜率之积为-1.【小问1详解】显然,相交,由得交点,由点代入得所以当,,相交时,.【小问2详解】过定点,因为,,不能围成三角形,所以,或与平行,或与平行,所以,或,或.【小问3详解】显然与不垂直,所以,且或所以的值为或22
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 机器人仿真测试与参数优化手册
- 仪器仪表防腐处理与维修手册
- 老年高血压管理临床带教:个体化降压方案
- 老年高血压急症合并认知障碍的降压策略
- 老年髋部骨折术后肺栓塞风险动态分层管理方案
- 病历时限质量管控制度及流程
- 老年骨质疏松性社区健康教育方案
- 《康复医学科院内感染抗菌药物合理应用指南》
- 2026山西浮山县太岳新能源有限责任公司招聘1人备考题库附答案详解
- 2026云南临沧沧源佤族自治县职业技术学校宿舍管理员招聘1人备考题库及答案详解(易错题)
- 双减背景下家校共育的问题及策略
- 美国变压器市场深度报告
- 建设工程第三方质量安全巡查标准
- 管理养老机构 养老机构的服务提供与管理
- 乳化液处理操作规程
- 饭店转让协议合同
- 营建的文明:中国传统文化与传统建筑(修订版)
- 液化天然气气化站安全检查表
- 2022年环保标记试题库(含答案)
- 2023年白银有色集团招聘笔试题库及答案解析
- GB/T 26253-2010塑料薄膜和薄片水蒸气透过率的测定红外检测器法
评论
0/150
提交评论