江西省萍乡市2026届数学高一上期末质量检测模拟试题含解析_第1页
江西省萍乡市2026届数学高一上期末质量检测模拟试题含解析_第2页
江西省萍乡市2026届数学高一上期末质量检测模拟试题含解析_第3页
江西省萍乡市2026届数学高一上期末质量检测模拟试题含解析_第4页
江西省萍乡市2026届数学高一上期末质量检测模拟试题含解析_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江西省萍乡市2026届数学高一上期末质量检测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知,则角的终边所在的象限是()A.第一象限 B.第二象限C.第三象限 D.第四象限2.我们知道,函数的图象关于坐标原点成中心对称图形的充要条件是函数为奇函数,有同学发现可以将其推广为:函数的图象关于点成中心对称图形的充要条件是函数为奇函数,则函数图象的对称中心为()A. B.C. D.3.已知,,,则、、的大小关系为()A. B.C. D.4.若sinα=,α是第二象限角,则sin(2α+)=()A. B.C. D.5.在下列命题中,不是公理的是A.平行于同一条直线的两条直线互相平行B.如果一条直线上的两点在一个平面内,那么这条直线在此平面内C.空间中,如果两个角的两边分别对应平行,那么这两角相等或互补D.如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线6.定义:对于一个定义域为的函数,若存在两条距离为的直线和,使得时,恒有,则称在内有一个宽度为的通道.下列函数:①;②;③;④.其中有一个宽度为2的通道的函数的序号为A.①② B.②③C.②④ D.②③④7.将函数图象向右平移个单位得到函数的图象,已知的图象关于原点对称,则的最小正值为()A.2 B.3C.4 D.68.函数的图像恒过定点,则的坐标是()A. B.C. D.9.下列函数中,在区间上为增函数的是()A. B.C. D.10.设集合,,则()A.{2,3} B.{1,2,3}C.{2,3,4} D.{1,2,3,4}二、填空题:本大题共6小题,每小题5分,共30分。11.已知,且,则实数的取值范围为__________12.函数的单调增区间为________13.已知函数,若,则_____14.若,,则________.15.在中,,,且在上,则线段的长为______16.已知函数是定义在的偶函数,且在区间上单调递减,若实数满足,则实数的取值范围是__________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数.(1)求的定义域;(2)若函数,且对任意的,,恒成立,求实数a的取值范围.18.已知是定义在上的奇函数,,当时的解析式为.(1)写出在上的解析式;(2)求在上的最值.19.已知A(1,1)和圆C:(x+2)2+(y﹣2)2=1,一束光线从A发出,经x轴反射后到达圆C(1)求光线所走过的最短路径长;(2)若P为圆C上任意一点,求x2+y2﹣2x﹣4y的最大值和最小值20.如图甲,直角梯形中,,,为的中点,在上,且,现沿把四边形折起得到空间几何体,如图乙.在图乙中求证:(1)平面平面;(2)平面平面.21.如图,在四棱锥中,底面ABCD为平行四边形,,平面底面ABCD,M是棱PC上的点.(1)证明:底面;(2)若三棱锥的体积是四棱锥体积的,设,试确定的值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】化,可知角的终边所在的象限.【详解】,将逆时针旋转即可得到,角的终边在第三象限.故选:C【点睛】本题主要考查了象限角的概念,属于容易题.2、A【解析】根据题意并结合奇函数的性质即可求解.【详解】由题意得,设函数图象的对称中心为,则函数为奇函数,即,则,解得,故函数图象的对称中心为.故选:.3、C【解析】利用对数函数、指数函数的单调性结合中间值法可得出、、的大小关系.【详解】因为,,,因此,.故选:C.4、D【解析】根据,求出的值,再将所求式子展开,转化成关于和的式子,然后代值得出结果【详解】因为且为第二象限角,根据得,,再根据二倍角公式得原式=,将,代入上式得,原式=故选D【点睛】本题考查三角函数给值求值,在已知角的取值范围时可直接用同角公式求出正余弦值,再利用和差公式以及倍角公式将目标式转化成关于和的式子,然后代值求解就能得出结果5、C【解析】A,B,D分别为公理4,公理1,公理2,C为角平行性质,选C6、D【解析】②③可由作图所得,④作图可知有一个宽度为1的通道,由定义可知比1大的通道都存在.7、B【解析】根据图象平移求出g(x)解析式,g(x)为奇函数,则g(0)=0,据此即可计算ω的取值.【详解】根据已知,可得,∵的图象关于原点对称,所以,从而,Z,所以,其最小正值为3,此时故选:B8、D【解析】利用指数函数的性质即可得出结果.【详解】由指数函数恒过定点,所以函数的图像恒过定点.故选:D9、B【解析】利用基本初等函数的单调性可得出合适的选项.【详解】函数、在区间上为减函数,函数在区间上为增函数,函数在区间上不单调.故选:B.10、A【解析】根据集合的交集运算直接可得答案.【详解】集合,,则,故选:A.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】,该函数的定义域为,又,故为上的奇函数,所以等价于,又为上的单调减函数,,也即是,解得,填点睛:解函数不等式时,要注意挖掘函数的奇偶性和单调性12、.【解析】结合定义域由复合函数的单调性可解得结果.【详解】由得定义域为,令,则在单调递减,又在单调递减,所以的单调递增区间是.故答案为:.13、-2020【解析】根据题意,设g(x)=f(x)+1=asinx+btanx,分析g(x)为奇函数,结合函数的奇偶性可得g(2)+g(﹣2)=f(2)+1+f(﹣2)+1=0,计算可得答案【详解】根据题意,函数f(x)=asinx+btanx﹣1,设g(x)=f(x)+1=asinx+btanx,有g(﹣x)=asin(﹣x)+btan(﹣x)=﹣(asinx+btanx)=﹣g(x),则函数g(x)为奇函数,则g(2)+g(﹣2)=f(2)+1+f(﹣2)+1=0,又由f(﹣2)=2018,则f(2)=﹣2020;故答案为-2020【点睛】本题考查函数奇偶性的性质以及应用,构造函数g(x)=f(x)+1是解题的关键,属于中档题14、【解析】,然后可算出的值,然后可得答案.【详解】因为,,所以,所以,所以,,因为,所以,故答案为:15、1【解析】∵,∴,∴,∵且在上,∴线段为的角平分线,∴,以A为原点,如图建立平面直角坐标系,则,D∴故答案为116、【解析】先利用偶函数的性质将不等式化简为,再利用函数在上的单调性即可转化为,然后求得的范围.【详解】因为为R上偶函数,则,所以,所以,即,因为为上的减函数,,所以,解得,所以,的范围为.【点睛】1.函数值不等式的求法:(1)利用函数的奇偶性、特殊点函数值等性质将函数值不等式转化为与大小比较的形式:;(2)利用函数单调性将转化为自变量大小比较的形式,再求解不等式即可.

偶函数的性质:;奇函数性质:;

若在D上为增函数,对于任意,都有;若在D上为减函数,对于任意,都有.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1).(2)(2,+∞).【解析】(1)使对数式有意义,即得定义域;(2)命题等价于,如其中一个不易求得,如不易求,则转化为恒成立,再由其它方法如分离参数法求解或由二次不等式恒成立问题求解【详解】(1)由题可知且,所以.所以的定义域为.(2)由题易知在其定义域上单调递增.所以在上的最大值为,对任意恒成立等价于恒成立.由题得.令,则恒成立.当时,,不满足题意.当时,,解得,因为,所以舍去.当时,对称轴为,当,即时,,所以;当,即时,,无解,舍去;当,即时,,所以,舍去.综上所述,实数a的取值范围为(2,+∞).【点睛】本题考查求对数型复合函数的定义域,不等式恒成立问题.解题时注意转化与化归思想的应用.18、(1)(2)最大值为0,最小值为【解析】(1)先求得参数,再依据奇函数性质即可求得在上的解析式;(2)转化为二次函数在给定区间求值域即可解决.【小问1详解】因为是定义在上的奇函数,所以,即,由,得,由,解得,则当时,函数解析式为设,则,,即当时,【小问2详解】当时,,所以当,即时,的最大值为0,当,即时,的最小值为.19、(1);(2)最大值为11,最小值为﹣1【解析】(1)点关于x轴的对称点在反射光线上,当反射光线从点经轴反射到圆周的路程最短,最短为;(2)将式子化简得到,转化为点点距,进而转化为圆心到的距离,加减半径,即可求得最值.【详解】(1)关于x轴的对称点为,由圆C:(x+2)2+(y﹣2)2=1得圆心坐标为C(﹣2,2),∴,即光线所走过的最短路径长为;(2)x2+y2﹣2x﹣4y=(x﹣1)2+(y﹣2)2﹣5(x﹣1)2+(y﹣2)2表示圆C上一点P(x,y)到点(1,2)的距离的平方,由题意,得,因此,x2+y2﹣2x﹣4y的最大值为11,最小值为﹣1【点睛】本题考查最短路径问题,以及圆外一点到圆上一点的距离的最值问题,属于基础题;求最短路径时作对称点,由两点之间线段最短的原理确定长度,将圆外一点距离的最值转化为点到圆心的距离和半径之间的关系.20、(1)证明见解析(2)证明见解析【解析】(1)证明出平面,平面,利用面面垂直的判定定理可证得结论成立;(2)证明出平面,可得出平面,利用面面垂直的判定定理可证得结论成立.【小问1详解】证明:翻折前,,翻折后,则有,,因为平面,平面,平面,因为平面,平面,平面,因为,因此,平面平面.【小问2详解】证明:翻折前,在梯形中,,,则,,则,翻

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论