版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
天津市静海区独流中学四校联考2026届高一数学第一学期期末学业水平测试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设,若直线与直线平行,则的值为A. B.C.或 D.或2.设,,,则a,b,c的大小关系是()A. B.C. D.3.下列函数中,既是偶函数,又在区间上单调递减的是()A. B.C. D.4.已知,则化为()A. B.C.m D.15.设集合,则集合的元素个数为()A.0 B.1C.2 D.36.已知,,,则的大小关系是()A. B.C. D.7.全集,集合,则()A. B.C. D.8.幂函数f(x)的图象过点(4,2),那么f()的值为()A. B.64C.2 D.9.设,,,则的大小关系为()A. B.C. D.10.为了得到函数图象,只需把的图象上的所有点()A.向左平移个单位 B.向右平移个单位C.向左平移个单位 D.向右平移个单位二、填空题:本大题共6小题,每小题5分,共30分。11.定义域为的奇函数,当时,,则关于的方程所有根之和为,则实数的值为________12.已知向量,,,则=_____.13.终边上一点坐标为,的终边逆时针旋转与的终边重合,则______.14.已知函数,是定义在区间上的奇函数,则_________.15.已知集合,集合,则________16.如果满足对任意实数,都有成立,那么a的取值范围是______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知圆C1:x2+y2+2x+2y-8=0与圆C2:x2+y2-2x+10y-24=0相交于A、B两点(1)求公共弦AB的长;(2)求经过A、B两点且面积最小的圆的方程18.如图,角的终边与单位圆交于点,且.(1)求;(2)求.19.已知均为正数,且,证明:,并确定为何值时,等号成立.20.函数的部分图象如图所示.(1)求、及图中的值;(2)设,求函数在区间上的最大值和最小值21.(1)计算:.(2)若,求的值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】由a(a+1)﹣2=0,解得a.经过验证即可得出【详解】由a(a+1)﹣2=0,解得a=﹣2或1经过验证:a=﹣2时两条直线重合,舍去∴a=1故选B【点睛】本题考查了两条直线平行的充要条件,考查了推理能力与计算能力,属于基础题2、C【解析】先判断,再判断得到答案.【详解】;;;,即故选:【点睛】本题考查了函数值的大小比较,意在考查学生对于函数性质的灵活运用.3、D【解析】依次判断4个选项的单调性及奇偶性即可.【详解】对于A,在区间上单调递增,错误;对于B,,由得,单调递增,错误;对于C,当时,没有意义,错误;对于D,为偶函数,且在时,单调递减,正确.故选:D.4、C【解析】把根式化为分数指数幂进行运算【详解】,.故选:C5、B【解析】解出集合中的不等式,得到集合中的元素,利用交集的运算即可得到结果.【详解】集合,所以.故选:B.6、A【解析】利用对数函数和指数函数的性质求解【详解】解:∵,∴,∵,∴,∵,∴,即,∴故选:A7、B【解析】先求出集合A,再根据补集定义求得答案.【详解】由题意,,则.故选:B.8、A【解析】设出幂函数,求出幂函数代入即可求解.【详解】设幂函数为,且图象过点(4,2),解得,所以,,故选:A【点睛】本题考查幂函数,需掌握幂函数的定义,属于基础题.9、D【解析】利用指数函数和对数函数的单调性即可判断.【详解】,,,,.故选:D.10、D【解析】利用三角函数图象的平移规律可得结论.【详解】因为,所以,为了得到函数的图象,只需把的图象上的所有点向右平移个单位.故选:D.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】由题意,作函数y=f(x)与y=a的图象如下,结合图象,设函数F(x)=f(x)﹣a(0<a<1)的零点分别为x1,x2,x3,x4,x5,则x1+x2=﹣6,x4+x5=6,﹣log0.5(﹣x3+1)=a,x3=1﹣2a,故x1+x2+x3+x4+x5=﹣6+6+1﹣2a=1﹣2a,∵关于x的方程f(x)﹣a=0(0<a<1)所有根之和为1﹣,∴a=故答案为.点睛:函数的零点或方程的根的问题,一般以含参数的三次式、分式、以e为底的指数式或对数式及三角函数式结构的函数零点或方程根的形式出现,一般有下列两种考查形式:(1)确定函数零点、图象交点及方程根的个数问题;(2)应用函数零点、图象交点及方程解的存在情况,求参数的值或取值范围问题研究方程根的情况,可以通过导数研究函数的单调性、最值、函数的变化趋势等,根据题目要求,通过数形结合的思想去分析问题,可以使得问题的求解有一个清晰、直观的整体展现.同时在解题过程中要注意转化与化归、函数与方程、分类讨论思想的应用12、【解析】先根据向量的减法运算求得,再根据向量垂直的坐标表示,可得关于的方程,解方程即可求得的值.【详解】因为向量,,所以则即解得故答案为:【点睛】本题考查了向量垂直的坐标关系,属于基础题.13、【解析】由题知,进而根据计算即可.【详解】解:因为终边上一点坐标为,所以,因为的终边逆时针旋转与的终边重合,所以故答案为:14、27【解析】由于奇函数的定义域必然关于原点对称,可得m的值,再求【详解】由于奇函数的定义域必然关于原点对称∴m=3,故f(m)=故答案为27【点睛】本题主要考查函数的奇偶性,利用了奇函数的定义域必然关于原点对称,属于基础题15、【解析】由交集定义计算【详解】由题意故答案为:16、【解析】根据题中条件先确定函数的单调性,再根据函数的单调性求解参数的取值范围.【详解】由对任意实数都成立可知,函数为实数集上的单调减函数.所以解得.故答案为.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)(x+2)2+(y-1)2=5.【解析】(1)直接把两圆的方程作差消去二次项即可得到公共弦所在的直线方程,利用点到直线距离公式以及勾股定理可得结果;(2)经过A、B两点且面积最小的圆就是以为直径的圆,求出中点坐标及的长度,则以为直径的圆的方程可求.【详解】(1)圆C1:x2+y2+2x+2y-8=0与圆C2:x2+y2-2x+10y-24=方程相减,可得得x-2y+4=0,此为公共弦AB所在的直线方程圆心C1(-1,-1),半径r1=.C1到直线AB的距离为d=故公共弦长|AB|=2.(2)过A、B且面积最小的圆就是以AB为直径的圆,x-2y+4=0与x2+y2+2x+2y-8=0联立可得,,其中点坐标为,即圆心为,半径为,所求圆的方程为(x+2)2+(y-1)2=5.【点睛】本题主要考查点到直线距离公式以及圆的弦长的求法,求圆的弦长有两种方法:一是利用弦长公式,结合韦达定理求解;二是利用半弦长,弦心距,圆半径构成直角三角形,利用勾股定理求解.18、(1);(2)【解析】(1)根据三角函数的定义,平方关系以及点的位置可求出,再由商数关系即可求出;(2)利用诱导公式即可求出【小问1详解】由三角函数定义知,所以,因,所以,所以.【小问2详解】原式.19、证明见解析,时,等号成立.【解析】根据重要不等式及均值不等式证明即可.【详解】证明:因为均为正数,所以.所以①故,而.②所以原不等式成立.当且仅当①式和②式等号成立,即当且仅当时,故当且仅当时,原不等式等号成立.20、(1),,;(2),.【解析】(1)由可得出,结合可求得的值,由结合可求得的值,可得出函数的解析式,再由以及可求得的值;(2)利用三角恒等变换思想化简函数的解析式为,由可求得的取值范围,结合正弦函数的基本性质可求得函数在区间上的最大值和最小值.【详解】(1)由题图得,,,,又,,得,,又,得,.又,且,,,得,综上所述:,,;(2),,,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 虚拟现实内容制作合同协议(2025年)
- 老年高血压家庭管理的护理指导
- 检验科废弃培养基的高压灭菌处理制度及流程
- 老年髋部骨折术后步态训练方案
- 老年骨质疏松的预防与骨密度管理
- 病区患者转床管理制度及流程
- 老年骨质疏松性椎体骨折微创治疗
- 2026云南玉溪红塔区计划生育协会公益性岗位招聘备考题库及答案详解(易错题)
- 老年运动员可穿戴设备OTS预警策略优化
- 2026江苏苏州大学科研助理岗位招聘7人备考题库及答案详解1套
- 教科版九年级物理上册期末测试卷(1套)
- 高一上学期期末考试英语试卷及答案两套(附听力录音稿)
- 内蒙古自治区通辽市霍林郭勒市2024届中考语文最后一模试卷含解析
- 复方蒲公英注射液的药代动力学研究
- 沟通技巧与情商提升
- 2024届新疆维吾尔自治区乌鲁木齐市高三上学期第一次质量监测生物试题【含答案解析】
- 公司基层党建问题清单
- 福州港罗源湾港区碧里作业区4号泊位扩能改造工程环境影响报告
- 变配电室送电施工方案
- 八年级物理下册《滑轮》练习题及答案-人教版
- 江苏省建设工程施工项目部关键岗位人员变更申请表优质资料
评论
0/150
提交评论