2026届西藏拉萨市拉萨中学高一上数学期末教学质量检测模拟试题含解析_第1页
2026届西藏拉萨市拉萨中学高一上数学期末教学质量检测模拟试题含解析_第2页
2026届西藏拉萨市拉萨中学高一上数学期末教学质量检测模拟试题含解析_第3页
2026届西藏拉萨市拉萨中学高一上数学期末教学质量检测模拟试题含解析_第4页
2026届西藏拉萨市拉萨中学高一上数学期末教学质量检测模拟试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届西藏拉萨市拉萨中学高一上数学期末教学质量检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设,则a,b,c的大小关系为()A. B.C. D.2.已知函数的定义域与值域均为,则()A. B.C. D.13.如图,在正方体ABCD﹣A1B1C1D1中,异面直线AC与A1D1所成的角是A.30° B.45°C.60° D.90°4.若是第二象限角,是其终边上的一点,且,则()A. B.C. D.或5.已知是偶函数,且在上是减函数,又,则的解集为()A. B.C. D.6.已知,则A. B.C. D.7.已知向量满足,且,若向量满足,则的取值范围是A. B.C D.8.下列说法正确的是A.截距相等的直线都可以用方程表示B.方程不能表示平行轴的直线C.经过点,倾斜角为直线方程为D.经过两点,的直线方程为9.函数在区间上的最大值为A.1 B.4C.-1 D.不存在10.已知函数,且,则A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.一个扇形周长为8,则扇形面积最大时,圆心角的弧度数是__________.12.已知函数,若函数图象恒在函数图象的下方,则实数的取值范围是__________.13.已知在同一平面内,为锐角,则实数组成的集合为_________14.方程在上的解是______.15.在上,满足的取值范围是______.16.已知,则__________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.(1)计算:;(2)已知,,求证:18.对于两个函数:和,的最大值为M,若存在最小的正整数k,使得恒成立,则称是的“k阶上界函数”.(1)若,是的“k阶上界函数”.求k的值;(2)已知,设,,.(i)求的最小值和最大值;(ii)求证:是的“2阶上界函数”.19.已知集合,(1)当,求;(2)若,求的取值范围.20.对于四个正数,如果,那么称是的“下位序对”(1)对于,试求的“下位序对”;(2)设均为正数,且是的“下位序对”,试判断之间的大小关系.21.在三棱柱ABC-A1B1C1中,AB⊥AC,B1C⊥平面ABC,E,F分别是AC,B1C的中点(1)求证:EF∥平面AB1C1;(2)求证:平面AB1C⊥平面ABB1

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】根据指数函数的性质求得,,根据对数函数的性质求得,即可得到答案.【详解】由题意,根据指数函数的性质,可得,由对数函数的性质,知,即所以.故选:D2、A【解析】根据函数的定义域可得,,,再根据函数的值域即可得出答案.【详解】解:∵的解集为,∴方程的解为或4,则,,,∴,又因函数的值域为,∴,∴.故选:A.3、B【解析】在正方体ABCD﹣A1B1C1D1中,AC∥A1C1,所以为异面直线AC与A1D1所成的角,由此能求出结果.【详解】因为AC∥A1C1,所以为异面直线AC与A1D1所成的角,因为是等腰直角三角形,所以.故选:B【点睛】本题考查异面直线所成的角的求法,属于基础题.4、C【解析】根据余弦函数的定义有,结合是第二象限角求解即可.【详解】由题设,,整理得,又是第二象限角,所以.故选:C5、B【解析】根据题意推得函数在上是增函数,结合,确定函数值的正负情况,进而求得答案.【详解】是偶函数,且在上是减函数,又,则,且在上是增函数,故时,,时,,故的解集是,故选:B.6、B【解析】,因为函数是增函数,且,所以,故选B考点:对数的运算及对数函数的性质7、B【解析】由题意利用两个向量加减法的几何意义,数形结合求得的取值范围.【详解】设,根据作出如下图形,则当时,则点的轨迹是以点为圆心,为半径的圆,且结合图形可得,当点与重合时,取得最大值;当点与重合时,取得最小值所以的取值范围是故当时,的取值范围是故选:B8、D【解析】A错误,比如过原点的直线,横纵截距均为0,这时就不能有选项中的式子表示;B当m=0时,表示的就是和y轴平行的直线,故选项不对C不正确,当直线的倾斜角为90度时,正切值无意义,因此不能表示.故不正确D根据直线的两点式得到斜率为,再代入一个点得到方程为:故答案为D9、C【解析】根据题干知,可画出函数图像,是开口向下的以y轴为对称轴的二次函数,在上单调递减,故最大值在1处取得得到-1.故答案为C10、A【解析】,,,,.故选:A.二、填空题:本大题共6小题,每小题5分,共30分。11、2【解析】设扇形的半径为,则弧长为,结合面积公式计算面积取得最大值时的取值,再用圆心角公式即可得弧度数【详解】设扇形的半径为,则弧长为,,所以当时取得最大值为4,此时,圆心角为(弧度)故答案为:212、【解析】作出和时,两个函数图象,结合图象分析可得结果.【详解】当时,,,两个函数的图象如图:当时,,,两个函数的图象如图:要使函数的图象恒在函数图象的下方,由图可知,,故答案为:.13、【解析】分析:根据夹角为锐角得向量数量积大于零且向量不共线,解得实数组成的集合.详解:因为为锐角,所以且不共线,所以因此实数组成的集合为,点睛:向量夹角为锐角的充要条件为向量数量积大于零且向量不共线,向量夹角为钝角的充要条件为向量数量积小于零且向量不共线.14、##【解析】根据三角函数值直接求角.【详解】由,得或,即或,又,故,故答案为.15、【解析】结合正弦函数图象可知时,结合的范围可得到结果.【详解】本题正确结果:【点睛】本题考查根据三角函数值的范围求解角所处的范围,关键是能够熟练应用正弦函数图象得到对应的自变量的取值集合.16、【解析】将题干中的两个等式先平方再相加,利用两角差的余弦公式可求得结果.【详解】由,,两式相加有,可得故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)13;(2)证明见解析.【解析】(1)根据指数和对数的运算法则直接计算可得;(2)根据对数函数的单调性分别求出范围和范围可判断.【详解】(1)原式(2)因为在上递减,在上递增,所以,,故因为,且在递增,所以,即所以,即【点睛】本题考查对数函数单调性的应用,解题的关键是利用对数函数的单调性求出范围,进而可比较大小.18、(1);(2)(i)时,,;时,,;时,,;(ii)证明部分见解析.【解析】(1)先求,的范围,再求的最大值,利用恒成立问题的方式处理;(2)分类讨论对称轴是否落在上即可;先求的最大值,需观察发现最值在取得,不要尝试用三倍角公式,另外的最大值必定在端点或者在顶点处取得,通过讨论的范围,证明即可【小问1详解】时,单调递增,于是,于是,则最大值为,又恒成立,故,注意到是正整数,于是符合要求的为.【小问2详解】(i)依题意得,为开口向上,对称轴为的二次函数,于是在上递减,在上递增,由于,,下分类讨论:当,即时,,;当,即时,,;当,即当,在上递减,,.(ii),则,当,即取等号,,,则,下令,只需说明时,即可,分类如下:当时,,且注意到,此时,显然时,单调递减,于是;当,由基本不等式,,且,,即,此时,而,时,由基本不等式,,故有:综上,时,,即当时,最小正整数【点睛】本题综合的考查了分类讨论思想,函数值域的求法等问题,特别是观察分析出的最大值,若用三倍角公式反倒会变得更加复杂.19、(1)(2)【解析】(1)首先求出集合,然后根据集合的交集运算可得答案;(2)分、两种情况讨论求解即可.【小问1详解】因为,所以因为,所以【小问2详解】当,即,时,符合题意当时可得或,解得或综上,的取值范围为20、(1)(2)【解析】(1)根据新定义,代入计算判断即可;(2)根据新定义得到ad<bc,再利用不等式的性质,即可判断.【详解】(1),的“下位序对”是.(2)是的“下位序对”,,均为正数,,即,,同理可得,综上所述,【点睛】关键点点睛:对于本题关键理解,如果,那么称是的“下位序对

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论