高一数学必修4平面向量测试题_第1页
高一数学必修4平面向量测试题_第2页
高一数学必修4平面向量测试题_第3页
高一数学必修4平面向量测试题_第4页
高一数学必修4平面向量测试题_第5页
已阅读5页,还剩4页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

高一数学必修4平面向量测试题一、考试说明本试卷旨在全面考查高一学生对《数学必修4》中平面向量章节知识的掌握程度,包括向量的基本概念、线性运算、坐标表示、数量积及其应用等核心内容。通过本测试,希望能帮助同学们巩固所学,发现不足,为后续学习奠定坚实基础。考试时间:90分钟满分:100分注意事项:1.答题前,务必将自己的姓名、班级填写清楚。2.请将答案写在答题卡的指定位置上,在本试卷上作答无效。3.注意向量符号的规范书写。二、选择题(本大题共6小题,每小题5分,共30分。在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列关于向量的说法中,正确的是()A.长度相等的向量叫做相等向量B.共线向量是在同一条直线上的向量C.零向量的长度为0,方向是任意的D.单位向量都相等2.已知向量a、b,则在下列各式中,正确的是()A.|a+b|=|a|+|b|B.|a-b|=|a|-|b|C.若a与b共线,则|a+b|=|a|+|b|D.若a与b反向,则|a+b|=||a|-|b||3.已知向量a=(1,2),b=(x,1),且a+2b与2a-b平行,则x的值为()A.1B.2C.1/2D.34.若向量a的模为3,向量b的模为4,且a与b的夹角为60°,则|a+b|等于()A.5B.√13C.√37D.75.已知向量a=(3,-4),则与a方向相同的单位向量e为()A.(3/5,-4/5)B.(-3/5,4/5)C.(3/7,-4/7)D.(3,-4)6.在△ABC中,点D是BC边的中点,设向量AB=c,AC=b,则向量AD等于()A.(b-c)/2B.(c-b)/2C.(b+c)/2D.b+c三、填空题(本大题共4小题,每小题5分,共20分)7.已知向量a=(2,-1),b=(-1,m),若a与b垂直,则m=________。8.已知点A(1,2),B(3,4),则向量AB的坐标为________,线段AB的中点坐标为________。(第一空2分,第二空3分)9.向量a=(1,1),b=(2,3),则a·b=________,a与b的夹角余弦值为________。(第一空2分,第二空3分)10.已知|a|=2,|b|=3,且a·b=-3,则a与b的夹角θ=________。四、解答题(本大题共3小题,共50分。解答应写出文字说明、证明过程或演算步骤)11.(本小题满分15分)已知向量a=(2,1),b=(-1,k)。(1)若a⊥b,求k的值;(2)若a∥b,求k的值;(3)若a与b的夹角为钝角,求k的取值范围。12.(本小题满分15分)如图,在平行四边形ABCD中,E、F分别是BC、DC的中点,AB=a,AD=b。(1)用a、b表示向量AE、AF;(2)求证:AE与AF不共线。(注:此处原题应有图,答题时可自行根据描述画出示意图辅助理解)13.(本小题满分20分)已知点O为坐标原点,向量OA=(2,-1),OB=(3,2),OC=(6,m)。(1)若A、B、C三点共线,求实数m的值;(2)在(1)的条件下,求向量AB与AC的夹角的余弦值;(3)若△ABC为直角三角形,且∠B为直角,求实数m的值。参考答案与提示一、选择题1.C(提示:考查向量基本概念的辨析,注意零向量的特殊性及共线向量的方向)2.D(提示:结合向量加法、减法的几何意义及共线向量的不同方向情况分析)3.C(提示:先分别求出a+2b与2a-b的坐标,再利用向量共线的坐标表示列方程求解)4.C(提示:利用向量模的平方等于向量的平方,即|a+b|²=(a+b)·(a+b)=|a|²+2a·b+|b|²,再开方)5.A(提示:单位向量为a/|a|)6.C(提示:利用向量加法的平行四边形法则或三角形法则,D为BC中点,AD=(AB+AC)/2)二、填空题7.2(提示:a·b=2*(-1)+(-1)*m=-2-m=0,解得m=2)8.(2,2);(2,3)(提示:AB=(3-1,4-2)=(2,2);中点坐标为((1+3)/2,(2+4)/2))9.5;5√26/26(提示:a·b=1*2+1*3=5;cosθ=a·b/(|a||b|)=5/(√2*√13)=5√26/26)10.120°(提示:cosθ=a·b/(|a||b|)=-3/(2*3)=-1/2,故θ=120°)三、解答题11.解:(1)a⊥b⇨a·b=0⇨2*(-1)+1*k=0⇨k=2。(2)a∥b⇨2*1-(-1)*1=0?(此处应为坐标交叉相乘差为0)⇨2*1-(-1)*k=0⇨2+k=0⇨k=-2。(3)a与b的夹角为钝角⇨a·b<0且a与b不共线反向。a·b=2*(-1)+1*k=k-2<0⇨k<2。由(2)知,当k=-2时,a与b共线反向,此时夹角为180°,不是钝角。故k的取值范围是k<2且k≠-2。12.解:(1)在平行四边形ABCD中,BC=AD=b,DC=AB=a。E是BC中点,所以BE=BC/2=b/2。AE=AB+BE=a+b/2。F是DC中点,所以DF=DC/2=a/2。AF=AD+DF=b+a/2。(2)证明:假设AE与AF共线,则存在实数λ,使得AE=λAF。即a+b/2=λ(b+a/2)⇨(1-λ/2)a+(1/2-λ)b=0。因为a与b不共线(平行四边形邻边),所以1-λ/2=0且1/2-λ=0。解得λ=2且λ=1/2,矛盾。故假设不成立,AE与AF不共线。13.解:(1)AB=OB-OA=(1,3),AC=OC-OA=(4,m+1)。A、B、C三点共线⇨AB∥AC⇨1*(m+1)-3*4=0⇨m+1=12⇨m=11。(2)当m=11时,AC=(4,12)。AB·AC=1*4+3*12=4+36=40。**AB**=√(1²+3²)=√10,**AC**cosθ=AB·AC/(|AB||AC|)=40/(√10*4√10)=40/(40)=1。(此时夹角为0°,说明三点共线时的特殊情况)(3)∠B为直角⇨BA·BC=0。BA=OA-OB=(-1,-3),BC=OC-OB=(3,m-2)。BA·BC=(-1)*3+(-3)*(m-2)=-3-3m+6=3-3m=0⇨m=1。测试小结本套测试题涵盖了平面向量的主要知识点,从基本概念到线

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论