Scratch赋能数学理解:小学中年级《分水果中的除法奥秘》项目式教学设计_第1页
Scratch赋能数学理解:小学中年级《分水果中的除法奥秘》项目式教学设计_第2页
Scratch赋能数学理解:小学中年级《分水果中的除法奥秘》项目式教学设计_第3页
Scratch赋能数学理解:小学中年级《分水果中的除法奥秘》项目式教学设计_第4页
Scratch赋能数学理解:小学中年级《分水果中的除法奥秘》项目式教学设计_第5页
已阅读5页,还剩6页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

Scratch赋能数学理解:小学中年级《分水果中的除法奥秘》项目式教学设计一、教学内容分析  本节课的教学内容根植于《义务教育数学课程标准(2022年版)》中“数与代数”领域对“数的运算”的要求。针对小学中年级(三、四年级)学生,核心在于理解除法的双重含义——等分除与包含除,并能在具体情境中灵活应用。从知识图谱看,它上承乘法的逆运算意义与“平均分”的初步感知,下启除法竖式计算、倍数关系及分数学习,是整数运算认知链中的关键枢纽。课标强调在解决问题中发展学生的运算能力和推理意识,这意味着教学不能止步于算法操练,而应深入算理本质。因此,本课将“除法模型的意义建构”而非单纯的计算熟练度,置于教学中心。过程方法上,我们采用项目式学习与跨学科融合路径,将抽象的除法概念转化为Scratch编程中可视化的“分水果”动画项目。这一转化过程本身,即是引导学生经历“具体情境→数学建模(除法算式)→数字化表达(编程实现)”的完整探究,深度融合了数学建模与计算思维两种核心学科思想方法。素养价值渗透方面,学生在协作设计程序、调试纠错以精确表达数学关系的过程中,不仅深化了对除法意义的理解,更潜移默化地培养了严谨求实的科学态度、解决问题的创新能力以及在数字化时代将创意转化为成果的综合素养。  学情研判需立体多维。学生已有基础是理解“平均分”的生活概念,具备初步的乘法口诀应用能力,并对Scratch图形化编程界面有基本操作经验。可能的认知障碍在于:其一,容易混淆“等分除”(已知总数和份数,求每份数)与“包含除”(已知总数和每份数,求份数)的情境,仅将除法理解为“平均分”;其二,从具体实物操作过渡到抽象数学符号(除法算式)存在思维跨度;其三,在编程中精准实现数学逻辑(如判断是否正好分完、如何表达剩余)是一大挑战。为此,教学将设计动态评估:通过课堂设问(如“这两种分法,算式一样,意思完全一样吗?”)、观察小组探究过程、分析学生初步搭建的程序逻辑草图,实时诊断理解层次。教学调适策略上,为概念理解薄弱的学生提供更多实物模拟操作(如小圆片)与直观动画支架;为编程逻辑遇到困难的学生预设“代码积木锦囊包”,内含关键逻辑判断模块的提示;为学有余力的学生设计开放挑战任务,如引入“余数”概念,或设计一个包含多种除法情境的互动小游戏,实现差异化支持。二、教学目标  知识目标:学生能超越机械记忆,在“分水果”的编程情境中,深度建构对除法意义的理解。他们不仅能正确列出除法算式,更能清晰阐释算式中每个数字所代表的具体情境含义(如总数、份数、每份数),并能辨析“等分”与“包含”两种不同除法模型在问题表征上的异同,从而将除法知识从事实性记忆转化为可迁移的概念性理解。  能力目标:重点发展学生的数学建模能力与计算思维。学生能够将一个真实的分物问题,抽象为数学除法模型,并进一步通过顺序、循环、条件判断等编程逻辑,在Scratch中将其转化为可运行的动态模型。例如,“能够设计并调试一个程序,模拟将12个苹果平均分给3个小动物的动态过程,并能用语言解释程序逻辑如何对应除法算式‘12÷3=4’”。  情感态度与价值观目标:在项目合作中,学生能体验到将数学创意转化为数字作品的成就感,激发对数学与信息科技的双重兴趣。通过调试程序中出现的“错误”(如水果没分完),培养面对挫折、耐心检查、精益求精的科学探究态度,并在小组分享中学会欣赏同伴的不同解决方案。  科学(学科)思维目标:核心发展模型化思想与逻辑推理意识。课程将引导学生经历“具体问题→数学表达式→程序算法”的两次抽象过程,强化其用模型刻画现实世界的思维习惯。同时,在编程实现中,必须进行严密的逻辑推理以确保分物的准确性与完整性,从而锤炼思维的条理性与严谨性。  评价与元认知目标:引导学生初步建立对自我学习过程的监控与调节意识。通过使用项目评价量规对作品进行自评与互评,学生能学会依据清晰标准审视工作成果;在课堂小结环节,通过反思“我是如何理解并解决这个分水果问题的”,促使学生回顾从困惑到明晰的思维路径,提升元认知能力。三、教学重点与难点  教学重点:本节课的教学重点是理解除法的本质意义,并能在具体情境(包括编程情境)中建立除法算式与实际问题之间的准确对应关系。其确立依据源于课程标准对“数的运算”的核心要求:理解算理。除法作为小学阶段最复杂的基本运算之一,其意义的充分理解是后续学习除法竖式、分数、比例等知识的基石。从能力立意看,无论是学业评价还是实际应用,能否正确选择运算并解释其意义,都比单纯的计算速度更能体现数学素养。  教学难点:教学难点在于引导学生完成从具体分物操作到抽象数学符号,再到程序化逻辑表达的两次思维跨越。具体表现为:第一,在编程中,如何用“重复执行直到…”、“如果…那么…”等逻辑块,精确地表达“平均分”的过程及结果。第二,区分“等分除”与“包含除”两种模型在编程实现上的逻辑差异(前者固定份数循环分配,后者固定每份数循环打包)。预设难点的主要依据是学情分析:中年级学生的抽象逻辑思维仍在发展中,而编程要求极高的步骤精确性与逻辑严密性,这构成了显著的认知挑战。突破方向在于提供强可视化、可拖拽调试的编程环境,以及教师设计的阶梯式任务脚手架,让学生在“做中学”、“错中学”。四、教学准备清单  1.教师准备  1.1数字资源与课件:精心设计的教学课件,清晰呈现项目任务、除法概念对比图、编程关键步骤提示。准备好的Scratch范例源文件《水果除法助手》,用于课堂演示与剖析。  1.2学习支架材料:设计并印制《“分水果”编程挑战任务单》,内含基础、进阶、挑战不同层次的任务说明。准备“代码积木锦囊包”提示卡,供有需要的学生取用。  1.3环境布置:教室电脑安装好Scratch3.0及以上版本,确保网络畅通。将学生预先分成4人异质小组,便于合作与互助。  2.学生准备  2.1知识准备:复习“平均分”的概念,熟记相关的乘法口诀。  2.2技能准备:具备Scratch基本操作能力,如添加角色、移动、说、重复等积木的使用。五、教学过程第一、导入环节  1.情境创设与冲突激发:“同学们,周末老师想举办一个小型茶话会,准备了12个又大又红的苹果。现在遇到了一个难题:如果我想平均分给3位来做客的小朋友,每个小朋友能分到几个?如果我改变主意,希望每个小朋友都能拿到4个苹果,那又够分给几位小朋友呢?”(利用贴近生活的真实问题,迅速吸引学生注意,并自然引出两种除法情境。)  1.1问题提出与路径预览:“大家很快列出了算式:12÷3=4和12÷4=3。咦,数字都一样,它们表示的意思真的完全一样吗?今天,我们不只用算式,还要请出我们的编程好朋友Scratch,来亲手制作一个‘智能分水果’的动画,让电脑来帮我们‘演一演’这两种分法到底是怎么分的!在动画里,除法会‘活’起来哦。”(提出核心驱动问题——辨析除法含义,并明确本节课用编程验证、深化理解的学习路径。)  1.2唤醒旧知与工具确认:“在动手之前,我们先快速回忆一下,在Scratch里,怎样让一个角色‘移动’、‘说话’?怎样让一段动作‘重复’执行?”(简要互动,激活学生已有的编程操作经验,为后续探究扫清工具障碍。)第二、新授环节  任务一:分析情境,明确数学模型  教师活动:首先,引导学生将生活问题抽象化。指着第一个问题:“这里有12个苹果,平均分给3人,求每人几个。”提问:“在这个问题里,什么是已知的总数?什么是我们要分的‘份数’?我们要求的是什么?”板书关键词语:总数、份数、每份数。然后转向第二个问题:“每个小朋友分4个,求可以分给几人。”对比提问:“这里,什么变了?什么没变?我们求的又是什么?”通过对比,引导学生发现:总数不变,但第一个问题已知份数求每份数(等分除),第二个问题已知每份数求份数(包含除)。最后,用画示意图或角色扮演的方式,让学生直观感受两种分的过程差异。“来,我们请三位同学上台,模拟第一种分法,一个一个地拿苹果;再模拟第二种,一包4个苹果地分给虚拟的朋友。”  学生活动:学生紧跟教师提问进行思考与回答,尝试用自己的语言描述两个问题的异同。参与情境模拟,在动作中体会“一个一个分”与“一包一包分”的过程区别。在任务单上,尝试用图形或文字记录对两个情境的分析。  即时评价标准:1.能否准确指出每个情境中的总数、份数、每份数。2.能否用语言或动作初步描述两种分法过程的差异。3.在小组讨论中,是否能够倾听同伴观点并补充自己的理解。  形成知识、思维、方法清单:★除法有两种基本模型:等分除与包含除。这是理解除法意义的基石,必须通过对比进行辨析。★在除法算式“a÷b=c”中,a、b、c在不同情境中代表不同含义。引导学生明确,a永远是总数,b和c则可能是份数或每份数,取决于问题。▲从生活问题到数学算式,是一个重要的抽象(建模)过程。提醒学生关注我们是如何“翻译”问题的。  任务二:规划动画,设计算法流程  教师活动:“现在,我们要为第一种分法(12个苹果分3人)设计动画了。大家想想,在Scratch舞台上,这个过程该怎么一步步实现?”引导学生进行算法规划。提出引导性问题:“我们需要几个角色?(苹果、接收者)苹果怎么出现?是一次性出现还是一个一个出现?怎么移动才算‘平均分’?(每个接收者依次轮流获得一个)什么时候停止?(所有苹果分完)”鼓励学生用流程图或文字在任务单上画出步骤。教师巡视,收集有代表性的规划方案,请学生简要分享。  学生活动:以小组为单位,围绕教师提出的问题展开讨论,合作规划动画的步骤顺序。在任务单上绘制简单的流程图或写出步骤列表。部分小组可能上台分享初步构思,如“先克隆12个苹果,然后让小猫、小狗、小兔三个角色轮流说‘我拿到了’,同时一个苹果移动过去。”  即时评价标准:1.规划是否涵盖了“开始→准备角色与数据→分配过程→结束”的基本逻辑结构。2.设计是否体现了“平均分”的核心规则(轮流、公平)。3.小组成员是否全员参与讨论,贡献想法。  形成知识、思维、方法清单:★解决问题前,先规划步骤(算法),能让编程更有条理。这是计算思维中“算法设计”的初步体现。▲流程图是表达算法思路的好工具。即使简单草图,也有助于理清逻辑。★“平均分”在算法上体现为“循环”与“顺序分配”。这是将数学规则转化为计算机指令的关键连接点。  任务三:搭建“等分除”程序雏形  教师活动:引导学生打开Scratch,开始实施规划。教师通过广播或演示,提供基础搭建支架:“首先,我们创建4个角色:1个苹果(作为原型),3个小朋友(或小动物)。然后,让苹果角色克隆出12个自己,并整齐排列好。”接着,抛出关键挑战:“现在,如何让这12个克隆体,一个接一个地、轮流飞到3个小朋友那里呢?”提示学生使用“重复执行”和“如果…那么…”积木,结合“编号”或“顺序”变量来控制分配目标。教师演示核心循环结构框架,但留出关键参数让学生思考填写:“看,这个‘等待’时间控制分得快慢,这个‘下一个接收目标’的变量如何变化才能实现轮流?”  学生活动:学生动手操作,创建角色,使用“当绿旗被点击”、“克隆”等积木初始化场景。尝试搭建分配循环。在此过程中,会遇到逻辑问题,如苹果不会轮流分配、或者分不完,小组内会进行调试和讨论。部分学生会尝试使用“变量”来记录当前应该分给谁。  即时评价标准:1.能否成功克隆指定数量的苹果并初始化位置。2.能否在程序中构建出循环分配的基本结构。3.调试过程中,是否表现出尝试不同方法解决问题的耐心与策略(如检查积木顺序、更改变量值)。  形成知识、思维、方法清单:★“克隆”功能可以方便地创建大量相同角色。★使用“变量”(如“当前分给谁”)是控制程序逻辑的关键。变量在这里充当了“指挥棒”,告诉程序下一个苹果该去哪。▲“重复执行直到…”是一个非常适合“分完为止”场景的控制结构。引导学生将其与“分完”这个条件联系起来。  任务四:对比修改,实现“包含除”逻辑  教师活动:“太棒了!很多小组已经让电脑成功地‘一个一个’分苹果了。现在,挑战升级:我们要实现第二种分法——每个小朋友一次拿4个,看看能分给几个小朋友。我们的程序需要做哪些大改动?”引导学生对比思考:在算法逻辑上,从“每次分配1个,按人循环”变为“每次打包4个,按包分配”。提示:“现在,我们循环的‘一批’是多少个?(4个)每一次循环,是送给一个固定的‘包’,而不是轮流送不同的人。”教师展示如何修改循环内部逻辑,可能需要引入“已打包数量”或“当前包编号”等新变量。  学生活动:学生在现有程序基础上进行修改。这是一个思维转换的关键点。学生需要重新思考循环的单元和停止条件。部分学生会敏锐地发现,原来控制“分给谁”的逻辑可能需要替换为控制“打包进度”的逻辑。小组间的探讨会更加深入,可能出现不同实现方案(如:一次克隆4个并移动;或用一个角色来回取4次)。  即时评价标准:1.能否理解新任务对算法逻辑的本质改变(从按人分配到按份打包)。2.能否成功修改或重构程序,实现“每次分配4个”的效果。3.在遇到困难时,能否借鉴任务三的经验或寻求组内、组间帮助。  形成知识、思维、方法清单:★不同的除法模型,对应不同的程序算法逻辑。这是本节课思维训练的制高点,深刻体现了“数学模型决定计算方法”。▲修改和调试程序是编程的常态,也是深化理解的过程。★同一个数学结果(如12÷4=3),可以通过不同的动画过程来表现。鼓励学生思考算法的多样性。  任务五:测试反思,建立算式与程序的联系  教师活动:邀请几个不同完成程度的小组展示他们的作品,并重点提问:“请指着你的程序,告诉大家,哪里体现了算式‘12÷3=4’中的‘12’、‘÷3’、和‘4’?”“在你的程序里,‘除’这个动作,具体是用哪几块积木来实现的?”引导学生将具体的代码块(如循环次数、每次分配量)与抽象的数学符号建立映射关系。针对常见错误,如总数分完后有剩余或分配不均,组织学生一起“诊断病因”。  学生活动:展示小组运行程序并讲解自己的设计思路。全体学生观看并思考教师提出的关联性问题。对自己程序进行最终测试和优化,确保精确匹配数学问题。填写任务单上的反思部分,回答“我的程序如何表达了除法算式”。  即时评价标准:1.能否清晰解释程序中关键部分与除法算式各元素的对应关系。2.程序运行结果是否准确无误地反映了数学事实。3.是否能在他人分享后,反思自己程序的优缺点。  形成知识、思维、方法清单:★程序是数学思想的动态化、可视化表达。★“÷”在程序中体现为一种“分配”或“分组”的控制逻辑。这是对除法算理最生动的诠释。▲测试(验证)是确保数学模型正确实现的关键步骤。鼓励学生养成严谨的验证习惯。第三、当堂巩固训练  本环节旨在通过分层任务,促进学生将新建构的理解进行应用与迁移。  基础层(全员参与):任务单上提供新情境:“15个香蕉,平均分给5只小猴子。”学生不要求完整编程,但需完成:1.判断这是等分除还是包含除,并写出算式;2.用文字或简单流程图描述在Scratch中实现这个动画的主要步骤。(“看谁最快最准地把问题‘翻译’成数学语言和算法语言!)  综合层(小组选择完成):挑战一个稍复杂情境:“老师有18颗糖,如果每个小朋友分到2颗,可以分给几个小朋友?如果每个小朋友分3颗呢?”要求小组选择一种情况,在之前程序基础上修改完成。这涉及改变总数和每份数,检验学生对变量控制的灵活掌握。(“试试看,只改几个数字,能不能让你的程序‘智慧’地解决新问题?”)  挑战层(学有余力个人或小组):引入“余数”概念:“有14个草莓,平均分给4个小朋友,结果会怎样?”鼓励学生探索如何用程序表现“每人分到3个,还剩2个”。这需要运用“取余”运算或条件判断来展示剩余。(“高手来挑战!让你们的程序不仅能分,还能处理‘分不完’的情况。”)  反馈机制:采用“画廊漫步”式互评。各小组将完成的基础层答案和综合层程序(如完成)屏幕共享或展示在桌面上。学生轮流参观,依据教师提供的简易评价贴纸(如“√”表示算法清晰,“?”表示有疑问,“!”表示有创意)进行同伴评价。教师巡回,针对共性问题和挑战层的精彩解法进行集中点评。第四、课堂小结  知识整合与反思:“同学们,今天的编程之旅就要结束了。谁能用一句话说说,除法在Scratch动画里‘活’成了什么样子?”引导学生总结核心发现:除法是一种分配或分组的规则,在程序中体现为循环和控制逻辑。请学生利用思维导图工具(或纸上绘制)快速梳理本节课关键点:除法两种模型→对应不同算法→程序实现与算式关联。  方法提炼:“我们是如何解决‘分水果’这个问题的?回顾一下我们的步骤。”师生共同回顾“分析问题(数学建模)→规划步骤(算法设计)→编程实现→测试反思”的项目学习流程,强调这是解决许多复杂问题的通用方法。  作业布置与延伸:公布分层作业:必做(基础性):1.完成练习纸上关于除法意义辨析的题目。2.完善课堂上的Scratch程序,并录制一段小视频介绍自己的作品。选做A(拓展性):设计一个包含“等分除”和“包含除”两种选择的交互式程序,让用户输入数字,程序自动演示分的过程。选做B(探究性):研究Scratch中“运算”类积木里的“取余”模块,尝试用它来优化“有剩余”情况的分物程序。(“期待看到大家更精彩、更智能的作品!我们下节课可以来个‘分物编程大师秀’!”)六、作业设计  基础性作业(必做):  1.概念巩固:完成练习纸上的判断题与情境题,强化对等分除、包含除的辨别能力。例如:判断“24块饼干,每袋装6块,可以装几袋?”属于哪种除法模型,并解释。  2.作品完善与表达:回家后,将课堂上未完成的程序调试至完美运行,并利用屏幕录制功能,录制一段不超过1分钟的讲解视频。要求视频中需清晰说出自己的名字、演示程序运行,并口头解释“我的程序是如何体现除法算式XX÷XX=XX的”。  拓展性作业(选做A):  设计一个名为“智能分物小助手”的交互式程序。程序要求:1.角色包含询问者和演示动画。2.程序运行后,能询问用户“物品总数是多少?”“你想怎么分?(选项:平均分成几份;每份几个)”3.根据用户输入的不同选择和数据,程序能自动判断并演示对应的分物动画过程,最后说出结果。此作业旨在综合应用输入、条件判断和本课核心逻辑。  探究性/创造性作业(选做B):  深入探究“除法中的余数”。任务:1.自学或探索Scratch中“()除以()的余数”积木的作用。2.改造或新建一个程序,处理如“17个橘子分给5个小朋友”这类不能整除的情况。要求程序不仅能演示分配过程,还能在最后用语言报告结果,如“每人分到3个,还剩下2个”。鼓励用创造性的方式展示余下的物品(如单独放在一边)。七、本节知识清单及拓展  ★除法的两种基本含义:等分除(已知总数和份数,求每份数)与包含除(已知总数和每份数,求份数)。它们是理解所有除法应用题的基石。教学提示:务必通过具体操作和情境对比来建立概念,避免死记硬背。  ★除法算式的意义构成:在算式a÷b=c中,a表示被分配的总数,b和c在不同的情境中分别代表份数或每份数。理解每个数字的“角色”是正确列式的关键。  ★“平均分”的算法本质:在编程中,“平均分”体现为一种受控的、公平的循环分配逻辑。要么按份数循环分配单个物品,要么按每份数循环打包物品。  ▲从问题到程序的两次抽象:第一次抽象:将现实世界问题转化为数学算式(数学模型)。第二次抽象:将数学逻辑转化为计算机能执行的步骤序列(算法/程序)。这个过程是计算思维的核心。  ★变量在控制逻辑中的作用:在本课的编程任务中,变量如“当前接收者编号”、“已分配数量”等,充当了程序状态的“记忆单元”和流程的“指挥棒”,是实现动态控制的关键。  ▲循环与条件结构的应用:“重复执行直到…”非常适合用于“分配完毕”为止的任务;“如果…那么…”可用于切换分配目标或判断是否完成打包。这些是实现分配逻辑的基本编程结构。  ★程序是数学思想的动态验证工具:运行程序可以直观检验除法算理是否正确理解。一个错误的分物动画,往往能暴露出对除法概念理解的偏差。  ▲调试的价值:编程中遇到错误(Bug)是绝佳的学习机会。调试过程迫使学习者细致检查每一步逻辑,从而深化对问题本身(这里是除法规则)的理解。  ★建模思想:学会用数学模型(这里是除法)概括一类实际问题,是重要的数学能力。本课通过编程,让这个模型“运行”起来,使建模思想更加可知可感。  ▲算法的多样性:实现同一个除法动画,可能有多种编程思路(例如,移动苹果本身vs.移动“小朋友”角色去接苹果)。鼓励多样性,有助于培养创新思维。  ★精确性的重要性:编程要求极高的精确性,一个积木的顺序错误或参数错误都可能导致结果失败。这反哺了数学学习所必需的严谨态度。  ▲跨学科联系(信息科技):本课涉及信息科技课程标准中“算法与程序设计”模块的初步内容,体现了用数字工具表达与解决问题的理念。八、教学反思  (一)目标达成度评估:从假设的课堂实况看,知识目标达成度较高。通过编程任务强驱动的学习,大部分学生能深刻体会到两种除法模型的差异,并能准确解释程序与算式的关联。能力目标上,学生的算法设计与问题分解能力在任务二、三中得到了切实锻炼,但将自然语言描述的算法转化为无歧义的代码,对部分学生仍是挑战,这恰是计算思维培养需要持续关注的点。情感目标在作品展示和“画廊漫步”环节表现突出,学生成就感强,合作氛围浓厚。元认知目标通过小结时的结构化反思得到初步引导,但如何让学生更自觉地运用评价量规,仍需在日常教学中强化。  (二)环节有效性剖析:导入环节的生活化情境与认知冲突迅速聚焦了学生注意力,效果良好。新授环节的五个任务构成了逻辑严密的脚手架。任务一(分析模型)是思维起点,至关重要;任务二(规划算法)是难点缓冲,让学生“先想后做”;任务三与任务四的对比实践是核心突破点,但也是时间最容易失控的环节,需严格把控各小组进度,并准备好更灵活的辅助资源。任务五(测试反思)是升

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论