云南省西畴县一中2026届高一下数学期末调研模拟试题含解析_第1页
云南省西畴县一中2026届高一下数学期末调研模拟试题含解析_第2页
云南省西畴县一中2026届高一下数学期末调研模拟试题含解析_第3页
云南省西畴县一中2026届高一下数学期末调研模拟试题含解析_第4页
云南省西畴县一中2026届高一下数学期末调研模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

云南省西畴县一中2026届高一下数学期末调研模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.点、、、在同一个球的球面上,,.若四面体的体积的最大值为,则这个球的表面积为()A. B. C. D.2.《九章算术》中,将四个面均为直角三角形的三棱锥称为鳖臑,若三棱锥为鳖臑,其中平面,,三棱锥的四个顶点都在球的球面上,则该球的体积是()A. B. C. D.3.等差数列中,,且,且,是其前项和,则下列判断正确的是()A.、、均小于,、、、均大于B.、、、均小于,、、均大于C.、、、均小于,、、均大于D.、、、均小于,、、均大于4.若样本的平均数为10,其方差为2,则对于样本的下列结论正确的是A.平均数为20,方差为8 B.平均数为20,方差为10C.平均数为21,方差为8 D.平均数为21,方差为105.设,,,则()A. B.C. D.6.已知,则下列不等式成立的是()A. B. C. D.7.的值为()A. B. C. D.8.某中学高一年级甲班有7名学生,乙班有8名学生参加数学竞赛,他们取得的成绩的茎叶图如图所示,其中甲班学生的平均分是85,乙班学生成绩的中位数是82,若从成绩在的学生中随机抽取两名学生,则两名学生的成绩都高于82分的概率为()A. B. C. D.9.若为圆的弦的中点,则直线的方程是()A. B.C. D.10.实数数列为等比数列,则()A.-2 B.2 C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知一组数据6,7,8,8,9,10,则该组数据的方差是____.12.的化简结果是_________.13.已知,则与的夹角等于___________.14.某四棱锥的三视图如图所示,该四棱锥最长棱的棱长为___________。15.关于的方程只有一个实数根,则实数_____.16.设为等差数列,若,则_____.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.若数列满足:对于,都有(为常数),则称数列是公差为的“隔项等差”数列.(Ⅰ)若,是公差为8的“隔项等差”数列,求的前项之和;(Ⅱ)设数列满足:,对于,都有.①求证:数列为“隔项等差”数列,并求其通项公式;②设数列的前项和为,试研究:是否存在实数,使得成等比数列()?若存在,请求出的值;若不存在,请说明理由.18.已知函数,,(,为常数).(1)若方程有两个异号实数解,求实数的取值范围;(2)若的图像与轴有3个交点,求实数的取值范围;(3)记,若在上单调递增,求实数的取值范围.19.在公差不为零的等差数列中,,且成等比数列.(1)求的通项公式;(2)设,求数列的前项和.20.已知以点(a∈R,且a≠0)为圆心的圆过坐标原点O,且与x轴交于点A,与y轴交于点B.(1)求△OAB的面积;(2)设直线l:y=﹣2x+4与圆C交于点P、Q,若|OP|=|OQ|,求圆心C到直线l的距离.21.已知函数,它的部分图象如图所示.(1)求函数的解析式;(2)当时,求函数的值域.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】

根据几何体的特征,小圆的圆心为,若四面体的体积取最大值,由于底面积不变,高最大时体积最大,可得与面垂直时体积最大,从而求出球的半径,即可求出球的表面积.【详解】根据题意知,、、三点均在球心的表面上,且,,,则的外接圆半径为,的面积为,小圆的圆心为,若四面体的体积取最大值,由于底面积不变,高最大时体积最大,所以,当与面垂直时体积最大,最大值为,,设球的半径为,则在直角中,,即,解得,因此,球的表面积为.故选:D.【点睛】本题考查的知识点是球内接多面体,球的表面积,其中分析出何时四面体体积取最大值,是解答的关键.2、A【解析】

根据三棱锥的结构特征和线面位置关系,得到中点为三棱锥的外接球的球心,求得球的半径,利用球的体积公式,即可求解.【详解】由题意,如图所示,因为,且为直角三角形,所以,又因为平面,所以,则平面,得.又由,所以中点为三棱锥的外接球的球心,则外接球的半径.所以该球的体积是.故选A.【点睛】本题考查了有关球的组合体问题,以及三棱锥的体积的求法,解答时要认真审题,注意球的性质的合理运用,求解球的组合体问题常用方法有(1)三条棱两两互相垂直时,可恢复为长方体,利用长方体的体对角线为外接球的直径,求出球的半径;(2)利用球的截面的性质,根据勾股定理列出方程求解球的半径.3、C【解析】

由,且可得,,,,结合等差数列的求和公式即等差数列的性质即可判断.【详解】,且,,数列的前项都是负数,,,,由等差数列的求和公式可得,,由公差可知,、、、均小于,、、均大于.故选:C.【点睛】本题考查等差数列前项和符号的判断,解题时要充分结合等差数列下标和的性质以及等差数列求和公式进行计算,考查分析问题和解决问题的能力,属于中等题.4、A【解析】

利用和差积的平均数和方差公式解答.【详解】由题得样本的平均数为,方差为.故选A【点睛】本题主要考查平均数和方差的计算,意在考查学生对这些知识的理解掌握水平,属于基础题.5、B【解析】

由指数函数的性质得,由对数函数的性质得,根据正切函数的性质得,即可求解,得到答案.【详解】由指数函数的性质,可得,由对数函数的性质可得,根据正切函数的性质,可得,所以,故选B.【点睛】本题主要考查了指数式、对数式以及正切函数值的比较大小问题,其中解答中熟记指数函数与对数函数的性质,以及正切函数的性质得到的取值范围是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.6、D【解析】

依次判断每个选项得出答案.【详解】A.,取,不满足,排除B.,取,不满足,排除C.,当时,不满足,排除D.,不等式两边同时除以不为0的正数,成立故答案选D【点睛】本题考查了不等式的性质,意在考查学生的基础知识.7、C【解析】试题分析:.考点:诱导公式.8、D【解析】

计算得到,,再计算概率得到答案.【详解】,解得;,解得;故.故选:.【点睛】本题考查了平均值,中位数,概率的计算,意在考查学生的应用能力.9、D【解析】

圆的圆心为O,求出圆心坐标,利用垂径定理,可以得到,求出直线的斜率,利用两直线垂直斜率关系可以求出直线的斜率,利用点斜式写出直线方程,最后化为一般式方程.【详解】设圆的圆心为O,坐标为(1,0),根据圆的垂径定理可知:,因为,所以,因此直线的方程为,故本题选D.【点睛】本题考查了圆的垂径定理、两直线垂直斜率的关系,考查了斜率公式.10、B【解析】

由等比数列的性质计算,注意项与项之间的关系即可.【详解】由题意,,又与同号,∴.故选B.【点睛】本题考查等比数列的性质,解题时要注意等比数列中奇数项同号,偶数项同号.二、填空题:本大题共6小题,每小题5分,共30分。11、.【解析】

由题意首先求得平均数,然后求解方差即可.【详解】由题意,该组数据的平均数为,所以该组数据的方差是.【点睛】本题主要考查方差的计算公式,属于基础题.12、【解析】原式,因为,所以,且,所以原式.13、【解析】

利用再结合已知条件即可求解【详解】由,即,故答案为:【点睛】本题考查向量的夹角计算公式,在考题中应用广泛,属于中档题14、3;【解析】

由三视图还原几何体,根据垂直关系和勾股定理可求得各棱长,从而得到最长棱的长度.【详解】由三视图可得几何体如下图所示:其中平面,,,,,,四棱锥最长棱为本题正确结果:【点睛】本题考查由三视图还原几何体的相关问题,关键是能够准确还原几何体中的长度和垂直关系,从而确定最长棱.15、【解析】

首先从方程看是不能直接解出这个方程的根的,因此可以转化成函数,从函数的奇偶性出发。【详解】设,则∴为偶函数,其图象关于轴对称,又依题意只有一个零点,故此零点只能是,所以,∴,∴,∴,∴,故答案为:【点睛】本题主要考查了函数奇偶性以及零点与方程的关系,方程的根就是对应函数的零点,本题属于基础题。16、【解析】

根据等差数列的性质:在等差数列中若则即可【详解】故答案为:【点睛】本题主要考查的等差数列的性质:若则,这一性质是常考的知识点,属于基础题。三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(Ⅰ)(Ⅱ)①当为偶数时,,当为奇数时,;②【解析】

试题分析:(Ⅰ)由新定义知:前项之和为两等差数列之和,一个是首项为3,公差为8的等差数列前8项和,另一个是首项为17,公差为8的等差数列前7项和,所以前项之和(Ⅱ)①根据新定义知:证明目标为,,相减得,当为奇数时,依次构成首项为a,公差为2的等差数列,,当为偶数时,依次构成首项为2-a,公差为2的等差数列,②先求和:当为偶数时,;当为奇数时,故当时,,,,由,则,解得.试题解析:(Ⅰ)易得数列前项之和(Ⅱ)①()(A)(B)(B)(A)得().所以,为公差为2的“隔项等差”数列.当为偶数时,,当为奇数时,;②当为偶数时,;当为奇数时,.故当时,,,,由,则,解得.所以存在实数,使得成等比数列()考点:新定义,等差数列通项及求和18、(1)(2)(3)或【解析】

(1)由题意,可知只要,即可使得方程有两个异号的实数解,得到答案;(2)由题意,得,则,再由的图象与轴由3个交点,列出相应的条件,即可求解.(3)由题意得,分类讨论确定函数的单调性,即可得到答案.【详解】由题可得,,与轴有一个交点;与有两个交点综上可得:实数的取值范围或【点睛】本题主要考查了函数与方程的综合应用,以及分段函数的性质的综合应用,其中解答中认真审题,合理分类讨论及利用函数的基本性质求解是解答的关键,试题综合性强,属于难题,着重考查了分析问题和解答问题的能力,以及分类讨论思想和转化思想的应用.19、(1);(2).【解析】

(1)先根据已知求出公差d,即得的通项公式;(2)先证明数列是等比数列,再利用等比数列的前n项和公式求.【详解】(1)设等差数列的公差为,由已知得,则,将代入并化简得,解得,(舍去).所以.(2)由(1)知,所以,所以,所以数列是首项为2,公比为4的等比数列.所以.【点睛】本题主要考查等差数列通项的求法,考查等比数列性质的证明和前n项和的求法,意在考查学生对这些知识的理解掌握水平,属于基础题.20、(1)4(2)【解析】

(1)求得圆的半径,设出圆的标准方程,由此求得两点坐标,进而求得三角形的面积.(2)根据,判断出,由直线的斜率求得直线的斜率,以此列方程求得,根据直线和圆相交,圆心到直线的距离小于半径,确定,同时得到圆心到直线的距离.【详解】(1)根据题意,以点(a∈R,且a≠0)为圆心的圆过坐标原点O,设圆C的半径为r,则r2=a2,圆C的方程为(x﹣a)2+(y)2=a2,令x=0可得:y=0或,则B(0,),令y=0可得:x=0或2a,则A(2a,0),△OAB的面积S|2a|×||=4;(2)根据题意,直线l:y=﹣2x+4与圆C交于点P、Q,则|CP|=|CQ|,又由|OP|=|OQ|,则直线OC与PQ垂直,又由直线l即PQ的方程为y=﹣2x+4,则KOC,解可得a=±2,当a=2时,圆心C的坐标为(2,1),圆心到直线l的距离d,r,r>d,此时直线l与圆相交,符合题意;当a=2时,圆心C的坐标为(﹣2,﹣1),圆心到直线l的距离d,r,r<d,此时直线l与圆相离,不符合题意;故圆心C到直线l的距离d.【点睛】本小题主要考查圆的标准方程,考查直线和圆的位置关系,考查两条直线的位置关系,考查运算求解能力,属于中档题.21、(1);(2).【解析】试题分析:(1)依题意,则,将点的坐标代入函数的解析式可得,故,函数解析式

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论