江苏省泰州市姜堰区“八校联盟”2026届高一数学第二学期期末学业质量监测模拟试题含解析_第1页
江苏省泰州市姜堰区“八校联盟”2026届高一数学第二学期期末学业质量监测模拟试题含解析_第2页
江苏省泰州市姜堰区“八校联盟”2026届高一数学第二学期期末学业质量监测模拟试题含解析_第3页
江苏省泰州市姜堰区“八校联盟”2026届高一数学第二学期期末学业质量监测模拟试题含解析_第4页
江苏省泰州市姜堰区“八校联盟”2026届高一数学第二学期期末学业质量监测模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏省泰州市姜堰区“八校联盟”2026届高一数学第二学期期末学业质量监测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.平面向量与共线且方向相同,则的值为()A. B. C. D.2.下列事件中,是必然事件的是()A.任意买一张电影票,座位号是2的倍数 B.13个人中至少有两个人生肖相同C.车辆随机到达一个路口,遇到红灯 D.明天一定会下雨3.如图,长方体中,,,那么异面直线与所成角的余弦值是()A. B. C. D.4.若cosα=13A.13 B.-13 C.5.已知直线与,若,则()A.2 B.1 C.2或-1 D.-2或16.要完成下列两项调查:①从某社区125户高收入家庭、280户中等收入家庭、95户低收入家庭中选出100户调查社会购买力的某项指标;②从某中学的15名艺术特长生中选出3名调查学习负担情况,宜采用的抽样方法依次为()A.①随机抽样法,②系统抽样法B.①分层抽样法,②随机抽样法C.①系统抽样法,②分层抽样法D.①②都用分层抽样法7.两条直线和,,在同一直角坐标系中的图象可能是()A. B.C. D.8.若,则以下不等式一定成立的是()A. B. C. D.9.已知直线与平行,则等于()A.或 B.或 C. D.10.直线的倾斜角为()A.30° B.60° C.120° D.150°二、填空题:本大题共6小题,每小题5分,共30分。11.若函数的图象与直线恰有两个不同交点,则m的取值范围是________.12.在公差为的等差数列中,有性质:,根据上述性质,相应地在公比为等比数列中,有性质:____________.13.在等差数列中,若,且它的前n项和有最大值,则当取得最小正值时,n的值为_______.14.已知向量、满足:,,,则_________.15.等比数列中首项,公比,则______.16.已知,若角的终边经过点,求的值.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知.(1)若三点共线,求的关系;(2)若,求点的坐标.18.已知向量,,.(1)求(2)若与垂直,求实数的值.19.在中,分别是角的对边,且.(1)求的大小;(2)若,求的面积.20.已知直线恒过定点,圆经过点和定点,且圆心在直线上.(1)求圆的方程;(2)已知点为圆直径的一个端点,若另一端点为点,问轴上是否存在一点,使得为直角三角形,若存在,求出的值;若不存在,说明理由.21.设数列的前n项和为,已知.(Ⅰ)求通项;(Ⅱ)设,求数列的前n项和.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】

利用向量共线的坐标运算求解,验证得答案.【详解】向量与共线,,解得.当时,,,与共线且方向相同.当时,,,与共线且方向相反,舍去.故选.【点睛】本题考查向量共线的坐标运算,是基础的计算题.2、B【解析】

根据必然事件的定义,逐项判断,即可得到本题答案.【详解】买一张电影票,座位号可以是2的倍数,也可以不是2的倍数,故A不正确;13个人中至少有两个人生肖相同,这是必然事件,故B正确;车辆随机到达一个路口,可以遇到红灯,也可以遇到绿灯或者黄灯,故C不正确;明天可能下雨也可能不下雨,故D不正确.故选:B【点睛】本题主要考查必然事件的定义,属基础题.3、A【解析】

可证得四边形为平行四边形,得到,将所求的异面直线所成角转化为;假设,根据角度关系可求得的三边长,利用余弦定理可求得余弦值.【详解】连接,四边形为平行四边形异面直线与所成角即为与所成角,即设,,,,在中,由余弦定理得:异面直线与所成角的余弦值为:本题正确选项:【点睛】本题考查异面直线所成角的求解问题,关键是能够通过平行关系将问题转化为相交直线所成角,在三角形中利用余弦定理求得余弦值.4、D【解析】

利用二倍角余弦公式cos2α=2【详解】由二倍角余弦公式可得cos2α=2【点睛】本题考查二倍角余弦公式的应用,着重考查学生对二倍角公式熟记和掌握情况,属于基础题.5、C【解析】

由两直线平行的等价条件,即可得到本题答案.【详解】因为,所以,解得或.故选:C【点睛】本题主要考查利用两直线平行的等价条件求值.6、B【解析】①由于社会购买力与收入有关系,所以应采用分层抽样法;②由于人数少,可以采用简单随机抽样法要完成下列二项调查:①从某社区125户高收入家庭,280户中等收入家庭,95户低收入家庭中,选出100户调查社会解:∵社会购买力的某项指标,受到家庭收入的影响而社区中各个家庭收入差别明显①用分层抽样法,而从某中学的15名艺术特长生,要从中选出3人调查学习负担情况的调查中个体之间差别不大,且总体和样本容量较小,∴②用随机抽样法故选B7、A【解析】

由方程得出直线的截距,逐个选项验证即可.【详解】由截距式方程可得直线的横、纵截距分别为,直线的横、纵截距分别为选项A,由的图象可得,可得直线的截距均为正数,故A正确;选项B,只有当时,才有直线平行,故B错误;选项C,只有当时,才有直线的纵截距相等,故C错误;选项D,由的图象可得,可得直线的横截距为正数,纵截距为负数,由图像不对应,故D错误;故选:A【点睛】本题考查了直线的截距式方程,需理解截距的定义,属于基础题.8、C【解析】

利用不等式的运算性质分别判断,正确的进行证明,错误的举出反例.【详解】没有确定正负,时,,所以不选A;当时,,所以不选B;当时,,所以不选D;由,不等式成立.故选C.【点睛】本题考查不等式的运算性质,比较法证明不等式,属于基本题.9、C【解析】

由题意可知且,解得.故选.10、D【解析】

由直线方程得到直线斜率,进而得到其倾斜角.【详解】因直线方程为,所以直线的斜率,故其倾斜角为150°.故选D【点睛】本题主要考查求直线的倾斜角,熟记定义即可,属于基础题型.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

化简函数解析式为,做出函数的图象,数形结合可得的取值范围.【详解】解:因为所以,,由,可得,则函数,的图象与直线恰有两个不同交点,即方程在上有两个不同的解,画出的图象如下所示:依题意可得时,函数的图象与直线恰有两个不同交点,故答案为:【点睛】本题主要考查正弦函数的最大值和单调性,函数的图象变换规律,正弦函数的图象特征,体现了转化、数形结合的数学思想,属于中档题.12、【解析】

根据题中条件,类比等差数列的性质,可直接得出结果.【详解】因为在公差为的等差数列中,有性质:,类比等差数列的性质,可得:在公比为等比数列中,故答案为:【点睛】本题主要考查类比推理,只需根据题中条件,结合等差数列与等比数列的特征,即可得出结果,属于常考题型.13、.【解析】试题分析:因为等差数列前项和有最大值,所以公差为负,所以由得,所以,=,所以当时,取到最小正值.考点:1、等差数列性质;2、等差数列的前项和公式.【方法点睛】求等差数列前项和的最值常用的方法有:(1)先求,再利用或求出其正负转折项,最后利用单调性确定最值;(2)利用性质求出其正负转折项,便可求得前项和的最值;(3)利用等差数列的前项和(为常数)为二次函数,根据二次函数的性质求最值.14、.【解析】

将等式两边平方得出的值,再利用结合平面向量的数量积运算律可得出结果.【详解】,,,因此,,故答案为.【点睛】本题考查利用平面向量数量积来计算平面向量的模,在计算时,一般将平面向量的模平方,利用平面向量数量积的运算律来进行计算,考查运算求解能力,属于中等题.15、9【解析】

根据等比数列求和公式,将进行转化,然后得到关于和的等式,结合,讨论出和的值,得到答案.【详解】因为等比数列中首项,公比,所以成首项为,公比为的等比数列,共项,所以整理得因为所以可得,等式右边为整数,故等式左边也需要为整数,则应是的约数,所以可得,所以,当时,得,此时当时,得,此时当时,得,此时,所以,故答案为:.【点睛】本题考查等比数列求和的基本量运算,涉及分类讨论的思想,属于中档题.16、【解析】

由条件利用任意角的三角函数的定义,求得和的值,从而可得的值.【详解】因为角的终边经过点,所以,,则.故答案为:【点睛】本题主要考查任意角的三角函数的定义,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)a+b=2;(2)(5,-3).【解析】

(1)求出和的坐标,然后根据两向量共线的等价条件可得所求关系式.(2)求出的坐标,根据得到关于的方程组,解方程组可得所求点的坐标.【详解】由题意知,,.(1)∵三点共线,∴∥,∴,∴.(2)∵,∴,∴,解得,∴点的坐标为.【点睛】本题考查向量共线的应用,解题的关键是把共线表示为向量的坐标的形式,进而转化为数的运算的问题,属于基础题.18、(1)-44;(2)【解析】

(1)利用已知条件求出,然后由向量的数量积坐标表示即可求出.(2)利用向量的垂直数量积为0,列出方程,求解即可.【详解】(1)由题意得:,;(2)由与垂直得:,即,即,解得:.【点睛】本题主要考查向量的数量积的求法与应用.19、(1)(2)【解析】试题分析:(Ⅰ)先由正弦定理将三角形的边角关系转化为角角关系,再利用两角和的正弦公式和诱导公式进行求解;(Ⅱ)先利用余弦定理求出,再利用三角形的面积公式进行求解.试题解析:(Ⅰ)由又所以.(Ⅱ)由余弦定理有,解得,所以点睛:在利用余弦定理进行求解时,往往利用整体思想,可减少计算量,若本题中的.20、(1);(2)见解析【解析】

(1)先求出直线过定点,设圆的一般方程,由题意列方程组,即可求圆的方程;(2)由(1)可知:求得直线的斜率,根据对称性求得点坐标,由在圆外,所以点不能作为直角三角形的顶点,分类讨论,即可求得的值.【详解】(1)直线的方程可化为,由解得∴定点的坐标为.设圆的方程为,则圆心则依题意有解得∴圆的方程为;(2)由(1)知圆的标准方程为,∴圆心,半径.∵是直径的两个端点,∴圆心是与的中点,∵轴上的点在圆外,∴是锐角,即不是直角顶点.若是的直角顶点,则,得;若是的直角顶点,则,得.综上所述,在轴上存在一点,使为直角三角形,或.【点睛】本题考查圆的方程的求法,直线与圆的位置关系,考查分类讨论思想,属于中档题.21、(Ⅰ);(Ⅱ).【解析】试题分析:(Ⅰ)当时,根据,构造,利用,两式相减得到,然后验证,得到数列的通项公式;(Ⅱ)由上一问可知.根据零点分和讨论去绝对值,利用分组转化求数列的和.试题解析:(Ⅰ)因为,所以当时,,两式相减得:当时,,因为,得到,解得,,所以数列是首项,公比为5的等比数列,则;(Ⅱ)由题意知

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论