2026届吉林省舒兰一中蛟河一中等百校联盟高一下数学期末达标检测试题含解析_第1页
2026届吉林省舒兰一中蛟河一中等百校联盟高一下数学期末达标检测试题含解析_第2页
2026届吉林省舒兰一中蛟河一中等百校联盟高一下数学期末达标检测试题含解析_第3页
2026届吉林省舒兰一中蛟河一中等百校联盟高一下数学期末达标检测试题含解析_第4页
2026届吉林省舒兰一中蛟河一中等百校联盟高一下数学期末达标检测试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届吉林省舒兰一中,蛟河一中等百校联盟高一下数学期末达标检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.命题“”的否定是()A., B.,C., D.,2.中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初步健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其大意为:“有一个人走378里路,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半,走了6天后到达目的地”.则该人最后一天走的路程为().A.24里 B.12里 C.6里. D.3里3.若,则下列不等式不成立的是()A. B. C. D.4.已知函数f(x)=5sinωx-π3(ω>0),若A.0,16 B.0,165.如果连续抛掷一枚质地均匀的骰子100次,那么第95次出现正面朝上的点数为4的概率为()A. B. C. D.6.在中,是边上一点,,且,则的值为()A. B. C. D.7.若双曲线的中心为原点,是双曲线的焦点,过的直线与双曲线相交于,两点,且的中点为,则双曲线的方程为()A. B. C. D.8.在锐角中,内角,,所对的边分别为,,,若的面积为,且,则的周长的取值范围是A. B.C. D.9.已知函数,则()A.的最小正周期为,最大值为1 B.的最小正周期为,最大值为C.的最小正周期为,最大值为1 D.的最小正周期为,最大值为10.sincos+cos20°sin40°的值等于A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若是等比数列,,,且公比为整数,则______.12.用数学归纳法证明“”,在验证成立时,等号左边的式子是______.13.已知,则____________.14.已知实数满足,则的最小值为_______.15.若数列满足,,则数列的通项公式______.16.若过点作圆的切线,则直线的方程为_______________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在数列中,,,数列的前项和为,且.(1)证明:数列是等差数列.(2)若对恒成立,求的取值范围.18.如图,在中,,,点在边上,且,.(1)求;(2)求的长.19.某校从高一年级学生中随机抽取60名学生,将期中考试的物理成绩(均为整数)分成六段:,,,…,后得到如图频率分布直方图.(1)根据频率分布直方图,估计众数和中位数;(2)用分层抽样的方法从的学生中抽取一个容量为5的样本,从这五人中任选两人参加补考,求这两人的分数至少一人落在的概率.20.如图所示,在直三棱柱中,,,M、N分别为、的中点.求证:平面;求证:平面.21.已知时不等式恒成立,求实数的取值范围.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】

含有一个量词的命题的否定,注意“改量词,否结论”.【详解】改为,改成,则有:.故选:B.【点睛】本题考查含一个量词的命题的否定,难度较易.2、C【解析】

由题意可知,每天走的路程里数构成以为公比的等比数列,由求得首项,再由等比数列的通项公式求得该人最后一天走的路程.【详解】解:记每天走的路程里数为,可知是公比的等比数列,由,得,解得:,,故选C.【点睛】本题考查等比数列的通项公式,考查了等比数列的前项和,是基础的计算题.3、B【解析】

根据不等式的基本性质、重要不等式、函数的单调性即可得出结论.【详解】解:∵,∴,,∴,即,故A成立;,即,故B不成立;,即,故C成立;∵指数函数在上单调递增,且,∴,故D成立;故选:B.【点睛】本题主要考查不等式的基本性质,作差法比较大小,属于基础题.4、B【解析】

由题得ωπ-π3<ωx-【详解】因为π<x≤2π,ω>0,所以ωπ-π因为fx在区间(π,2π]所以ωπ-π3≥kπ解得k+13≤ω<因为k+1所以-4因为k∈Z,所以k=-1或k=0.当k=-1时,0<ω<16;当k=0时,故选:B【点睛】本题主要考查三角函数的零点问题和三角函数的图像和性质,意在考查学生对该知识的理解掌握水平,属于中档题.5、B【解析】

由随机事件的概念作答.【详解】抛掷一枚质地均匀的骰子,出现正面朝上的点数为4,这个事件是随机事件,每次抛掷出现的概率是相等的,都是,不会随机抛掷次数的变化而变化.故选:B.【点睛】本题考查随机事件的概率,属于基础题.6、D【解析】

根据,用基向量表示,然后与题目条件对照,即可求出.【详解】由在中,是边上一点,,则,即,故选.【点睛】本题主要考查了平面向量基本定理的应用及向量的线性运算.7、B【解析】由题可知,直线:,设,,得,又,解得,所以双曲线方程为,故选B。8、C【解析】

首先根据面积公式和余弦定理可将已知变形为,,然后根据正弦定理,将转化为,利用,化简为,再根据三角形是锐角三角形,得到的范围,转化为三角函数求取值范围的问题.【详解】因为的面积为,所以,所以,由余弦定理可得,则,即,所以.由正弦定理可得,所以.因为为锐角三角形,所以,所以,则,即.故的周长的取值范围是.【点睛】本题考查了正余弦定理和三角形面积公式,以及辅助角公式和三角函数求取值范围的问题,属于中档题型,本题需认真审题,当是锐角三角形时,需满足三个角都是锐角,即.9、D【解析】

结合二倍角公式,对化简,可求得函数的最小正周期和最大值.【详解】由题意,,所以,当时,取得最大值为.由函数的最小正周期为,故的最小正周期为.故选:D.【点睛】本题考查三角函数周期性与最值,考查学生的计算求解能力,属于基础题.10、B【解析】由题可得,.故选B.二、填空题:本大题共6小题,每小题5分,共30分。11、512【解析】

由题设条件知和是方程的两个实数根,解方程并由公比q为整数,知,,由此能够求出公比,从而得到.【详解】是等比数列,

,,

,,

和是方程的两个实数根,

解方程,

得,,

公比q为整数,

,,

,解得,

.故答案为:512【点睛】本题考查等比数列的通项公式的求法,利用了等比数列下标和的性质,是基础题.解题时要认真审题,仔细解答,注意合理地进行等价转化.12、【解析】

根据左边的式子是从开始,结束,且指数依次增加1求解即可.【详解】因为左边的式子是从开始,结束,且指数依次增加1所以,左边的式子为,故答案为.【点睛】项数的变化规律,是利用数学归纳法解答问题的基础,也是易错点,要使问题顺利得到解决,关键是注意两点:一是首尾两项的变化规律;二是相邻两项之间的变化规律.13、【解析】

由已知结合同角三角函数基本关系式可得,然后分子分母同时除以求解.【详解】,.故答案为:.【点睛】本题考查三角函数的化简求值,考查同角三角函数基本关系式的应用,是基础的计算题.14、【解析】

实数满足表示点在直线上,可以看作点到原点的距离,最小值是原点到直线的距离,根据点到直线的距离公式求解.【详解】因为实数满足=1所以表示直线上点到原点的距离,故的最小值为原点到直线的距离,即,故的最小值为1.【点睛】本题考查点到点,点到直线的距离公式,此题的关键在于的最小值所表示的几何意义的识别.15、【解析】

在等式两边取倒数,可得出,然后利用等差数列的通项公式求出的通项公式,即可求出.【详解】,等式两边同时取倒数得,.所以,数列是以为首项,以为公差的等差数列,.因此,.故答案为:.【点睛】本题考查利用倒数法求数列通项,同时也考查了等差数列的定义,考查计算能力,属于中等题.16、或【解析】

讨论斜率不存在时是否有切线,当斜率存在时,运用点到直线距离等于半径求出斜率【详解】圆即①当斜率不存在时,为圆的切线②当斜率存在时,设切线方程为即,解得此时切线方程为,即综上所述,则直线的方程为或【点睛】本题主要考查了过圆外一点求切线方程,在求解过程中先讨论斜率不存在的情况,然后讨论斜率存在的情况,利用点到直线距离公式求出结果,较为基础。三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见解析(2)【解析】

(1)根据已知可变形为常数;(2)首先求数列的通项公式,然后利用裂项相消法求,若满足对恒成立,需满足,,求的取值范围.【详解】(1)证明:因为,所以,,则.又,故数列是以1为首项,2为公差的等差数列.(2)由(1)可知,则.因为,所以,所以.易知单调递增,则.所以,且,解得.故的取值范围为.【点睛】本题考查了证明等差数列的方法,以及裂项相消法求和,本题的一个亮点是与函数结合考查数列的最值问题,涉及最值时,需先判断函数的单调性,可以根据函数特征直接判断单调性或是根据的正负判断单调性,然后求最值.18、(1);(2)7.【解析】试题分析:(I)在中,利用外角的性质,得即可计算结果;(II)由正弦定理,计算得,在中,由余弦定理,即可计算结果.试题解析:(I)在中,∵,∴∴(II)在中,由正弦定理得:在中,由余弦定理得:∴考点:正弦定理与余弦定理.19、(1)众数为75,中位数为73.33;(2).【解析】

(1)由频率分布直方图能求出a=0.1.由此能求出众数和中位数;(2)用分层抽样的方法从[40,60)的学生中抽取一个容量为5的样本,从这五人中任选两人参加补考,基本事件总数,这两人的分数至少一人落在[50,60)包含的基本事件个数,由此能求出这两人的分数至少一人落在[50,60)的概率.【详解】(1)由频率分布直方图得:,

解得,

所以众数为:,的频率为,

的频率为,

中位数为:.(2)用分层抽样的方法从的学生中抽取一个容量为5的样本,

的频率为0.1,的频率为0.15,

中抽到人,中抽取人,从这五人中任选两人参加补考,

基本事件总数,这两人的分数至少一人落在包含的基本事件个数,所以这两人的分数至少一人落在的概率.【点睛】在求解有关古典概型概率的问题时,首先求出样本空间中基本事件的总数,其次求出概率事件中含有多少个基本事件,然后根据公式求得概率20、(1)见解析;(2)见解析.【解析】

(1)推导出,从而平面,进而,再由,,得是正方形,由此能证明平面.取的中点F,连BF、推导出四边形BMNF是平行四边形,从而,由此能证明平面.【详解】证明:在直三棱柱中,侧面底面ABC,且侧面底

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论