版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖南省洞口县第四中学2026届数学高一下期末复习检测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在长方体中,,,则异面直线与所成角的余弦值为()A. B.C. D.2.设,,则下列不等式成立的是()A. B. C. D.3.某工厂一年中各月份的收入、支出情况的统计如图所示,下列说法中错误的是().A.收入最高值与收入最低值的比是B.结余最高的月份是月份C.与月份的收入的变化率与至月份的收入的变化率相同D.前个月的平均收入为万元4.已知等比数列中,,且有,则()A. B. C. D.5.已知中,,,,那么角等于()A. B. C.或 D.6.设的内角所对边的长分别为,若,则角=()A. B.C. D.7.在计算机BASIC语言中,函数表示整数a被整数b除所得的余数,如.用下面的程序框图,如果输入的,,那么输出的结果是()A.7 B.21 C.35 D.498.空间直角坐标系中,点关于轴对称的点的坐标是()A. B.C. D.9.已知函数图象的一条对称轴是,则函数的最大值为()A.5 B.3 C. D.10.四棱锥中,平面,底面是正方形,且,则直线与平面所成角为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.如图,在正方体中,、分别是、的中点,则异面直线与所成角的大小是______.12.如图甲是第七届国际数学教育大会(简称)的会徽图案,会徽的主体图案是由如图乙的一连串直角三角形演化而成的,其中,如果把图乙中的直角三角形继续作下去,记的长度构成数列,则此数列的通项公式为_____.13.已知,若方程的解集为,则__________.14.在中,角的对边分别为,且面积为,则面积的最大值为_____.15.不等式的解集为_________.16.在我国古代数学著作《孙子算经》中,卷下第二十六题是:今有物,不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?满足题意的答案可以用数列表示,该数列的通项公式可以表示为________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知圆过点,,圆心在直线上,是直线上任意一点.(1)求圆的方程;(2)过点向圆引两条切线,切点分别为,,求四边形的面积的最小值.18.(1)求函数的单调递增区间;(2)求函数,的单调递减区间.19.设为正项数列的前项和,且满足.(1)求的通项公式;(2)令,,若恒成立,求的取值范围.20.已知向量,,其中为坐标原点.(1)若,求向量与的夹角;(2)若对任意实数都成立,求实数的取值范围.21.如图,在长方体中,,点为的中点.(1)求证:直线平面;(2)求证:平面平面;(3)求直线与平面的夹角.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】
画出长方体,将平移至,则,则即为异面直线与所成角,由余弦定理即可求解.【详解】根据题意,画出长方体如下图所示:将平移至,则即为异面直线与所成角,,由余弦定理可得故选:C【点睛】本题考查了长方体中异面直线的夹角求法,余弦定理在解三角形中的应用,属于基础题.2、D【解析】试题分析:本题是选择题,可采用逐一检验,利用特殊值法进行检验,很快问题得以解决.解:∵a>b,c>d;∴设a=1,b=-1,c=-2,d=-5,选项A,1-(-2)>-1-(-5),不成立;选项B,1(-2)>(-1)(-5),不成立;取选项C,,不成立,故选D考点:不等式的性质点评:本题主要考查了基本不等式,基本不等式在考纲中是C级要求,本题属于基础题3、D【解析】由图可知,收入最高值为万元,收入最低值为万元,其比是,故项正确;结余最高为月份,为,故项正确;至月份的收入的变化率为至月份的收入的变化率相同,故项正确;前个月的平均收入为万元,故项错误.综上,故选.4、A【解析】,,所以选A5、B【解析】
先由正弦定理求出,进而得出角,再根据大角对大边,大边对大角确定角.【详解】由正弦定理得:,,∴或,∵,∴,∴,故选B.【点睛】本题主要考查正弦定理的应用以及大边对大角,大角对大边的三角形边角关系的应用.6、B【解析】
试题分析:,由正弦定理可得即;因为,所以,所以,而,所以,故选B.考点:1.正弦定理;2.余弦定理.7、B【解析】
模拟执行循环体,即可得到输出值.【详解】,,,,继续执行得,,继续执行得,,结束循环,输出.故选:B.【点睛】本题考查循环体的执行,属程序框图基础题.8、A【解析】
关于轴对称,纵坐标不变,横坐标、竖坐标变为相反数.【详解】关于轴对称的两点的纵坐标相同,横坐标、竖坐标均互为相反数.所以点关于轴对称的点的坐标是.故选:A.【点睛】本题考查空间平面直角坐标系,考查关于坐标轴、坐标平面对称的问题.属于基础题.9、B【解析】
函数图象的一条对称轴是,可得,解得.可得函数,再利用辅助角公式、倍角公式、三角函数的有界性即可得出.【详解】函数图象的一条对称轴是,,解得.则函数当时取等号.函数的最大值为1.故选.【点睛】本题主要考查三角函数的性质应用以及利用二倍角公式和辅助角公式进行三角恒等变换.10、A【解析】
连接交于点,连接,证明平面,进而可得到即是直线与平面所成角,根据题中数据即可求出结果.【详解】连接交于点,因为平面,底面是正方形,所以,,因此平面;故平面;连接,则即是直线与平面所成角,又因,所以,.所以,所以.故选A【点睛】本题主要考查线面角的求法,在几何体中作出线面角,即可求解,属于常考题型.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
将所求两条异面直线平移到一起,解三角形求得异面直线所成的角.【详解】连接,根据三角形中位线得到,所以是异面直线与所成角.在三角形中,,所以三角形是等边三角形,故.故填:.【点睛】本小题主要考查异面直线所成的角的求法,考查空间想象能力,属于基础题.12、【解析】
由图可知,由勾股定理可得,利用等差数列的通项公式求解即可.【详解】根据图形,因为都是直角三角形,,是以1为首项,以1为公差的等差数列,,,故答案为.【点睛】本题主要考查归纳推理的应用,等差数列的定义与通项公式,以及数形结合思想的应用,意在考查综合应用所学知识解答问题的能力,属于与中档题.13、【解析】
将利用辅助角公式化简,可得出的值.【详解】,其中,,因此,,故答案为.【点睛】本题考查利用辅助角公式化简计算,化简时要熟悉辅助角变形的基本步骤,考查运算求解能力,属于中等题.14、【解析】
利用三角形面积构造方程可求得,可知,从而得到;根据余弦定理,结合基本不等式可求得,代入三角形面积公式可求得最大值.【详解】,由余弦定理得:(当且仅当时取等号)本题正确结果:【点睛】本题考查解三角形问题中的三角形面积的最值问题的求解;求解最值问题的关键是能够通过余弦定理构造等量关系,进而利用基本不等式求得边长之积的最值,属于常考题型.15、【解析】
利用两个数的商是正数等价于两个数同号;将已知的分式不等式转化为整式不等式,求出解集.【详解】同解于解得或故答案为:【点睛】本题考查解分式不等式,利用等价变形转化为整式不等式是解题的关键.16、【解析】
根据题意结合整除中的余数问题、最小公倍数问题,进行分析求解即可.【详解】由题意得:一个数用3除余2,用7除也余2,所以用3与7的最小公倍数21除也余2,而用21除余2的数我们首先就会想到23;23恰好被5除余3,即最小的一个数为23,同时这个数相差又是3,5,7的最小公倍数,即,即数列的通项公式可以表示为,故答案为:.【点睛】本题以数学文化为背景,利用数列中的整除、最小公倍数进行求解,考查逻辑推理能力和运算求解能力.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】
(1)首先列出圆的标准方程,根据条件代入,得到关于的方程求解;(2)根据切线的对称性,可知,,这样求面积的最小值即是求的最小值,当点是圆心到直线的距离的垂足时,最小.【详解】解:(1)设圆的方程为.由题意得解得故圆的方程为.另解:先求线段的中垂线与直线的交点,即解得从而得到圆心坐标为,再求,故圆的方程为.(2)设四边形的面积为,则.因为是圆的切线,所以,所以,即.因为,所以.因为是直线上的任意一点,所以,则,即.故四边形的面积的最小值为.【点睛】本题考查了圆的标准方程,和与圆,切线有关的最值的计算,与圆有关的最值计算,需注意数形结合.18、(1);(2).【解析】
(1)利用余弦函数的单调性列出不等式直接求的单调递增区间.(2)利用正弦函数的单调递减区间,直接求解,的单调递减区间.【详解】解:(1)由,,可得,,函数的单调递增区间:,.(2)因为,;可得,.时,.函数,的单调递减区间:.【点睛】本题考查三角函数的单调性的求法,考查学生的计算能力,属于基础题.19、(1)(2)【解析】
(1)代入求得,根据与的关系可求得,可知数列为等差数列,利用等差数列通项公式求得结果;验证后可得最终结果;(2)由(1)可得,采用裂项相消的方法求得,可知,从而得到的范围.【详解】(1)由题知:,……①令得:,解得:当时,……②①-②得:∴,即是以为首项,为公差的等差数列经验证满足(2)由(1)知:即【点睛】本题考查等差数列通项公式的求解、裂项相消法求和,关键是能够利用与的关系证得数列为等差数列,从而求得通项公式,属于常规题型.20、(1)或;(2)或.【解析】
(1)按向量数量积的定义先求夹角余弦,再求得夹角;(2)不等式化为恒成立,令取1和-1代入解不等式组即可得.【详解】(1)由题意,,记向量与的夹角为,又,则,当时,,,当时,,.(2),由得,∵,∴,∴,解得或.【点睛】本题考查向量模与夹角,考查不等式恒成立问题,不等式中把作为一个整体,它是关于的一次不等式,因此要使它恒成立,只要取1和-1时均成立即可.21、(1)见证明;(2)见证明;(3)【解析】
(1)连接,交于,则为中点,连接OP,可证明,从而可证明直线平面;(2)先证明AC⊥BD,,可得到平面,然后结合平面,可知平面平面;(3)连接,由(2)知,平面平面,可
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年中医药考试中药药理学中药配方综合选择题
- 2026年注册会计师考试税法题目及答案详解
- 2026年工程材料及实验技能操作题库专业篇
- 2026年生物医药研发与质量管理主管级考试预测题集
- 2026年公共政策分析与执行能力题库
- 2026年财务报表分析与编制试题及答案
- 2026年全民科学素质竞赛知识性试题及答案
- 2026年语文文言文阅读理解与赏析练习题
- 2026年软件系统测试专业考试题目软件质量保障技术
- 2026年环境科学基本概念及原理试题集
- TCSEE0276-2021直流输电换流站交流侧电网谐波分析技术规范
- 基于人工智能的大学语文教学数字化转型与挑战
- 2025年市场营销知识题库及答案(含AB卷)
- 2026年齐齐哈尔高等师范专科学校单招(计算机)测试备考题库必考题
- 甲状腺相关眼病护理查房
- 天安门课件教学课件
- 设备查验管理制度和流程(3篇)
- 嵌入式入门课件
- 初中地理课程标准解读
- 2025年宁夏回族自治区学校教师队伍“十五五”发展规划
- 咨询行业服务售后服务方案(3篇)
评论
0/150
提交评论