版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖北省恩施州巴东三中2026届数学高一下期末考试试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.定义在上的函数若关于的方程(其中)有个不同的实根,,…,,则()A. B. C. D.2.已知扇形的面积为2cm2,扇形圆心角θ的弧度数是4,则扇形的周长为()A.2cm B.4cm C.6cm D.8cm3.直线被圆截得的弦长为()A.4 B. C. D.4.棱长都是1的三棱锥的表面积为()A. B. C. D.5.某防疫站对学生进行身体健康调查,与采用分层抽样的办法抽取样本.某中学共有学生2000名,抽取了一个容量为200的样本,样本中男生103人,则该中学共有女生()A.1030人 B.97人 C.950人 D.970人6.已知、是圆:上的两个动点,,,若是线段的中点,则的值为()A. B. C. D.7.已知角A满足,则的值为()A. B. C. D.8.设等差数列的前项和为,,,则()A. B. C. D.9.在中,,,,点P是内(包括边界)的一动点,且(),则的最大值为()A.6 B. C. D.610.若且,则下列四个不等式:①,②,③,④中,一定成立的是()A.①② B.③④ C.②③ D.①②③④二、填空题:本大题共6小题,每小题5分,共30分。11.将函数的图象向左平移个单位长度,得到函数的图象,则__________.12.已知,,且,则的最小值为________.13.已知函数,的最小正周期是___________.14.若,则______(用表示).15.设Sn为数列{an}的前n项和,若Sn=(-1)nan-,n∈N,则a3=________.16.P是棱长为4的正方体的棱的中点,沿正方体表面从点A到点P的最短路程是_______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数,若在定义域内存在,使得成立,则称为函数的局部对称点.(1)若,证明:函数必有局部对称点;(2)若函数在区间内有局部对称点,求实数的取值范围;(3)若函数在上有局部对称点,求实数的取值范围.18.已知分别是的三个内角所对的边.(1)若的面积,求的值;(2)若,且,试判断的形状.19.定义:对于任意,满足条件且(是与无关的常数)的无穷数列称为数列.(1)若,证明:数列是数列;(2)设数列的通项为,且数列是数列,求常数的取值范围;(3)设数列,若数列是数列,求的取值范围.20.正四棱锥中,,分别为,的中点.(1)求证:平面;(2)若,求异面直线和所成角的余弦值.21.已知分别是内角的对边,.(1)若,求(2)若,且求的面积.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】画出函数的图象,如图,由图可知函数的图象关于对称,解方程方程,得或,时有三个根,,时有两个根,所以关于的方程共有五个根,,,故选C.【方法点睛】本题主要考查函数的图象与性质以及函数与方程思想、数形结合思想的应用,属于难题.数形结合是根据数量与图形之间的对应关系,通过数与形的相互转化来解决数学问题的一种重要思想方法,.函数图象是函数的一种表达形式,它形象地揭示了函数的性质,为研究函数的数量关系提供了“形”的直观性.归纳起来,图象的应用常见的命题探究角度有:1、确定方程根的个数;2、求参数的取值范围;3、求不等式的解集;4、研究函数性质.2、C【解析】设扇形的半径为R,则R2θ=2,∴R2=1R=1,∴扇形的周长为2R+θ·R=2+4=6(cm).3、B【解析】
先由圆的一般方程写出圆心坐标,再由点到直线的距离公式求出圆心到直线m的距离d,则弦长等于.【详解】∵,∴,∴圆的圆心坐标为,半径为,又点到直线的距离,∴直线被圆截得的弦长等于.【点睛】本题主要考查圆的弦长公式的求法,常用方法有代数法和几何法;属于基础题型.4、A【解析】
三棱锥的表面积为四个边长为1的等边三角形的面积和,故,故选A.5、D【解析】由分层抽样的办法可知在名学生中抽取的男生有,故女生人数为,应选答案D.6、A【解析】由题意得,所以,选A.7、A【解析】
将等式两边平方,利用二倍角公式可得出的值.【详解】,在该等式两边平方得,即,解得,故选A.【点睛】本题考查同角三角函数的基本关系,考查二倍角正弦公式的应用,一般地,解三角函数有关问题时,遇到,常用平方法来求解,考查计算能力,属于中等题.8、A【解析】
利用等差数列的基本量解决问题.【详解】解:设等差数列的公差为,首项为,因为,,故有,解得,,故选A.【点睛】本题考查了等差数列的通项公式与前项和公式,解决问题的关键是熟练运用基本量法.9、B【解析】
利用余弦定理和勾股定理可证得;取,作,根据平面向量平行四边形法则可知点轨迹为线段,由此可确定,利用勾股定理可求得结果.【详解】由余弦定理得:如图,取,作,交于在内(包含边界)点轨迹为线段当与重合时,最大,即故选:【点睛】本题考查向量模长最值的求解问题,涉及到余弦定理解三角形的应用;解题关键是能够根据平面向量线性运算确定动点轨迹,根据轨迹确定最值点.10、C【解析】
根据且,可得,,且,,根据不等式的性质可逐一作出判断.【详解】由且,可得,∴,且,,由此可得①当a=0时,不成立,②由,,则成立,③由,,可得成立,④由,若,则不成立,因此,一定成立的是②③,故选:C.【点睛】本题考查不等式的基本性质的应用,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
先利用辅助角公式将函数的解析式化简,根据三角函数的变化规律求出函数的解析式,即可计算出的值.【详解】,由题意可得,因此,,故答案为.【点睛】本题考查辅助角公式化简、三角函数图象变换,在三角图象相位变换的问题中,首先应该将三角函数的解析式化为(或)的形式,其次要注意左加右减指的是在自变量上进行加减,考查计算能力,属于中等题.12、【解析】
由,可得,然后利用基本不等式可求出最小值.【详解】因为,所以,当且仅当,时取等号.【点睛】利用基本不等式求最值必须具备三个条件:①各项都是正数;②和(或积)为定值;③等号取得的条件.13、【解析】
先化简函数f(x),再利用三角函数的周期公式求解.【详解】由题得,所以函数的最小正周期为.故答案为【点睛】本题主要考查和角的正切和正切函数的周期的求法,意在考查学生对这些知识的理解掌握水平,属于基础题.14、【解析】
直接利用诱导公式化简求解即可.【详解】解:,则,故答案为:.【点睛】本题考查诱导公式的应用,三角函数化简求值,考查计算能力,属于基础题.15、-【解析】当n=3时,S3=a1+a2+a3=-a3-,则a1+a2+2a3=-,当n=4时,S4=a1+a2+a3+a4=a4-,两式相减得a3=-.16、【解析】
从图形可以看出图形的展开方式有二,一是以底棱BC,CD为轴,可以看到此两种方式是对称的,所得结果一样,另外一种是以侧棱为轴展开,即以BB1,DD1为轴展开,此两种方式对称,求得结果一样,故解题时选择以BC为轴展开与BB1为轴展开两种方式验证即可【详解】由题意,若以BC为轴展开,则AP两点连成的线段所在的直角三角形的两直角边的长度分别为4,6,故两点之间的距离是若以BB1为轴展开,则AP两点连成的线段所在的直角三角形的两直角边的长度分别为2,8,故两点之间的距离是故沿正方体表面从点A到点P的最短路程是cm故答案为【点睛】本题考查多面体和旋转体表面上的最短距离问题,求解的关键是能够根据题意把求几何体表面上两点距离问题转移到平面中来求三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2);(3)【解析】
试题分析:(1)利用题中所给的定义,通过二次函数的判别式大于0,证明二次函数有局部对称点;(2)利用方程有解,通过换元,转化为打钩函数有解问题,利用函数的图象,确定实数c的取值范围;(3)利用方程有解,通过换元,转化为二次函数在给定区间有解,建立不等式组,通过解不等式组,求得实数的取值范围.试题解析:(1)由得=,代入得,=,得到关于的方程=).其中,由于且,所以恒成立,所以函数=)必有局部对称点.(2)方程=在区间上有解,于是,设),,,其中,所以.(3),由于,所以=.于是=(*)在上有解.令),则,所以方程(*)变为=在区间内有解,需满足条件:.即,,化简得.18、(1);(2)等腰直角三角形.【解析】试题分析:(1)解三角形问题,一般利用正余弦定理进行边角转化.首先根据面积公式解出b边,得,再由由余弦定理得:,所以,(2)判断三角形形状,利用边的关系比较直观.因为,所以由余弦定理得:,所以,在中,,所以,所以是等腰直角三角形.解:(1),2分,得3分由余弦定理得:,5分所以6分(2)由余弦定理得:,所以9分在中,,所以11分所以是等腰直角三角形;12分考点:正余弦定理19、(1)证明见解析;(2);(3).【解析】
(1)根据题中的新定义代入即可证出.(2)设,,,代入通项解不等式组,使即可求解.(3)首先根据可求时,,当时,,根据题中新定义求出成立,可得,再验证恒成立即可求解.【详解】(1),且,则满足,则数列是数列.综上所述,结论是:数列是数列.(2)设,,则,得,,,则数列的最大值为,则(3),当时,当时,,由,得,当时,恒成立,则要使数列是数列,则的取值范围为.【点睛】本题考查数列的性质和应用,解题时要认真审题,仔细解答,注意合理地进行等价转化.20、(1)见解析(2)【解析】
(1)取的中点,连接、,可得四边形为平行四边形,得到,由线面平行的判定可得平面;(2)连接交于,则为的中点,结合为的中点,得,可得(或其补角)为异面直线和所成角,在正四棱锥中,由为的中点,且,可得,设,求解三角形可得异面直线和所成角的余弦值.【详解】(1)取的中点,连接、,是的中点,且,在正四棱锥中,底面为正方形,且,又为的中点,且,且,则四边形为平行四边形,,平面,平面,平面;(2)连接交于,则为的中点,又为的中点,,又,(或其补角)为异面直线和所成角,在正四棱锥中,由为的中点
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 北大博士考核制度
- 盾构班组考核制度
- 班风班纪考核制度
- 电气安全考核制度
- 护士业务考核制度
- 采购薪酬考核制度
- 初中美术考核制度
- 公路质监考核制度
- 车间质检考核制度
- 供热成本考核制度
- 深静脉置管的并发症与护理讲课件
- 智能客户服务实务(第三版)课件全套 王鑫 项目1-8 走近智能时代客户服务-打造极致的客户体验
- 票据买断协议书范本
- 部编版语文四年级下册第二单元大单元备课
- 糖尿病临床路径
- 第四届全国天然气净化操作工职业技能竞赛考试题库(含答案)
- CNG加气站安全经验分享
- 钻井技术创新实施方案
- 医院培训课件:《静脉中等长度导管临床应用专家共识》
- ISO9000质量管理体系手册及程序文件
- 2024届高考专题复习:下定义+课件
评论
0/150
提交评论