版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省阳春一中2026届数学高一下期末质量跟踪监视模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设变量,满足约束条件,则目标函数的最大值为()A. B. C. D.2.在区间上随机选取一个数,则满足的概率为()A. B. C. D.3.在中,,,角的平分线,则长为()A. B. C. D.4.把函数的图象沿轴向右平移个单位,再把所得图象上各点的纵坐标不变,横坐标变为原来的,可得函数的图象,则的解析式为()A. B.C. D.5.已知数列{an}的前n项和Sn=3n(λ-n)-6,若数列{an}单调递减,则λ的取值范围是A.(-∞,2) B.(-∞,3) C.(-∞,4) D.(-∞,5)6.设函数,其中均为非零常数,若,则的值是()A.2 B.4 C.6 D.不确定7.如图所示,在正方形ABCD中,E为AB的中点,F为CE的中点,则A. B.C. D.8.已知函数在上是x的减函数,则a的取值范围是()A. B. C. D.9.在△ABC中,角A,B,C所对的边分别为a,b,c,若a﹣b=ccosB﹣ccosA,则△ABC的形状为()A.等腰三角形 B.等边三角形C.直角三角形 D.等腰三角形或直角三角形10.已知各项均不为零的数列,定义向量,,.下列命题中真命题是()A.若对任意的,都有成立,则数列是等差数列B.若对任意的,都有成立,则数列是等比数列C.若对任意的,都有成立,则数列是等差数列D.若对任意的,都有成立,则数列是等比数列二、填空题:本大题共6小题,每小题5分,共30分。11.已知三棱锥的底面是腰长为2的等腰直角三角形,侧棱长都等于,则其外接球的体积为______.12.在数列中,,,,则_____________.13._____________.14.若正实数,满足,则的最小值是________.15.《九章算术》中,将底面为长方形且由一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的三棱锥称之为鳖臑.若三棱锥为鳖臑,平面,,三棱锥的四个顶点都在球的球面上,则球的表面积为__________.16.已知向量满足,则三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数.(1)若关于的不等式的解集是,求,的值;(2)设关于的不等式的解集是,集合,若,求实数的取值范围.18.在中,角所对的边分别为,,,,为的中点.(1)求的长;(2)求的值.19.已知向量,.(I)若,共线,求的值.(II)若,求的值;(III)当时,求与夹角的余弦值.20.已知函数的周期为,且图像上一个最低点为.(1)求的解析式(2)若函数在上至少含20个零点时,求b的最小值.21.已知函数,设其最小值为(1)求;(2)若,求a以及此时的最大值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】
作出可行域,利用平移法即可求出.【详解】作出不等式组表示的平面区域,如图所示:当直线平移至经过直线与直线的交点时,取得最大值,.故选:C.【点睛】本题主要考查简单线性规划问题的解法应用,属于基础题.2、D【解析】
在区间上,且满足所得区间为,利用区间的长度比,即可求解.【详解】由题意,在区间上,且满足所得区间为,由长度比的几何概型,可得概率为,故选D.【点睛】本题主要考查了长度比的几何概型的概率的计算,其中解答中认真审题,合理利用长度比求解是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.3、B【解析】
在中利用正弦定理可求,从而可求,再根据内角和为可得,从而得到为等腰三角形,故可求的长.【详解】在中,由正弦定理有即,所以,因为,故,故,所以,故,为等腰三角形,故.故选B.【点睛】在解三角形中,我们有时需要找出不同三角形之间相关联的边或角,由它们沟通分散在不同三角形的几何量.4、C【解析】
根据三角函数图像变换的原则,即可得出结果.【详解】先把函数的图象沿轴向右平移个单位,得到;再把图像上各点的纵坐标不变,横坐标变为原来的,得到.故选C【点睛】本题主要考查三角函数的图像变换问题,熟记图像变换的原则即可,属于常考题型.5、A【解析】
,,因为单调递减,所以,所以,且,所以只需,,且,所以,故选A.6、C【解析】
根据正弦、余弦的诱导公式,由,可以得到等式,求出的表达式,结合刚得到的等式求值即可.【详解】因为,所以.故选:C【点睛】本题考查三角函数的化简求值,考查诱导公式的应用,属于基础题.7、D【解析】
由平面向量基本定理和向量运算求解即可【详解】根据题意得:,又,,所以.故选D.【点睛】本题主要考查了平面向量的基本定理的简单应用,属于基础题.8、C【解析】
由复合函数单调性及函数的定义域得不等关系.【详解】由题意,解得.故选:C.【点睛】本题考查对数型复合函数的单调性,解题时要注意对数函数的定义域.9、D【解析】
用正弦定理化边为角,再由诱导公式和两角和的正弦公式化简变形可得.【详解】∵a﹣b=ccosB﹣ccosA,∴,∴,∴,∴或,∴或,故选:D.【点睛】本题考查正弦定理,考查三角形形状的判断.解题关键是诱导公式的应用.10、A【解析】
根据向量平行的坐标表示,得到,利用累乘法,求得,从而可作出判定,得到答案.【详解】由题意知,向量,,,当时,可得,即,所以,所以数列表示首项为,公差为的等差数列.当,可得,即,所以,所以数列既不是等差数列,也不是等比数列.故选A.【点睛】本题主要考查了向量的平行关系的坐标表示,等差数列的定义,以及“累乘法”求解通项公式的应用,着重考查了推理与运算能力,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
先判断球心在上,再利用勾股定理得到半径,最后计算体积.【详解】三棱锥的底面是腰长为2的等腰直角三角形,侧棱长都等于为中点,为外心,连接,平面球心在上设半径为故答案为【点睛】本题考查了三棱锥外接球的体积,意在考查学生的空间想象能力和计算能力.12、5【解析】
利用递推关系式依次求值,归纳出:an+6=an,再利用数列的周期性,得解.【详解】∵a1=1,a2=5,an+2=an+1-an(n∈N*),∴a3=a2-a1=5-1=4,同理可得:a4=-1,a5=-5,a6=-4,a7=1,a8=5,…,∴an+6=an.则a2018=a6×336+2=a2=5【点睛】本题考查了递推关系、数列的周期性,考查了推理能力与计算能力.13、【解析】,故填.14、【解析】
将配凑成,由此化简的表达式,并利用基本不等式求得最小值.【详解】由得,所以.当且仅当,即时等号成立.故填:.【点睛】本小题主要考查利用基本不等式求和式的最小值,考查化归与转化的数学思想方法,属于中档题.15、【解析】
由题意得该四面体的四个面都为直角三角形,且平面,可得,.因为为直角三角形,可得,所以,因此,结合几何关系,可求得外接球的半径,,代入公式即可求球的表面积.【详解】本题主要考查空间几何体.由题意得该四面体的四个面都为直角三角形,且平面,,,,.因为为直角三角形,因此或(舍).所以只可能是,此时,因此,所以平面所在小圆的半径即为,又因为,所以外接球的半径,所以球的表面积为.【点睛】本题考查三棱锥的外接球问题,难点在于确定BC的长,即得到,再结合几何性质即可求解,考查学生空间想象能力,逻辑推理能力,计算能力,属中档题.16、【解析】试题分析:=,又,,代入可得8,所以考点:向量的数量积运算.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),.(2).【解析】分析:(1)先根据不等式解集与对应方程根的关系得x2-(a+1)x+1=0的两个实数根为m、2,再利用韦达定理得结果.(2)当A∩B=时,即不等式f(x)>0对x∈B恒成立,再利用变量分离法得a+1<x+的最小值,最后根据基本不等式求最值,即得结果.详解:(1)∵关于x的不等式f(x)<0的解集是{x|m<x<2},∴对应方程x2-(a+1)x+1=0的两个实数根为m、2,由根与系数的关系,得,解得a=,m=;(2)∵关于x的不等式f(x)≤0的解集是A,集合B={x|0≤x≤1},当A∩B=时,即不等式f(x)>0对x∈B恒成立;即x∈时,x2-(a+1)x+1>0恒成立,∴a+1<x+对于x∈(0,1]恒成立(当时,1>0恒成立);∵当x∈(0,1]时,∴a+1<2,即a<1,∴实数a的取值范围是.点睛:一元二次方程的根与对应一元二次不等式解集以及对应二次函数零点的关系,是数形结合思想,等价转化思想的具体体现,注意转化时的等价性.18、(1).(2)【解析】
(1)在中分别利用余弦定理完成求解;(2)在中利用正弦定理求解的值.【详解】解:(1)在中,由余弦定理得,∴,解得∵为的中点,∴.在中,由余弦定理得,∴.(2)在中,由正弦定理得,∴.【点睛】本题考查解三角形中的正余弦定理的运用,难度较易.对于给定图形的解三角形问题,一定要注意去结合图形去分析.19、(I);(II);(III)【解析】
(1)根据题意,由向量平行的坐标公式可得﹣2x=4,解可得x的值,即可得答案;(2)若,则有,结合向量数量积的坐标可得,即4x﹣2=0,解可得x的值,即可得答案;(3)根据题意,由x的值可得的坐标,由向量的坐标计算公式可得、和的值,结合,计算可得答案.解:(I)∵与共线,∴,(II)∵,∴,∴(III)∵,∵,,∴,又∵,∴.20、(1)(2)【解析】
(1)由周期得,利用最低点坐标可得,得解析式;(2)直接求出零点,根据零点排列得出有20个零点时,的最小值.【详解】(1)由最低点为,得,由,得,由点在图像上得,即,,即,又,,.(2)由(1)得,周期,在长为的闭区间内有2个或3个零点,由,得,或,所以或..又,则当时恰有20个零点,此时b的最小值为.【点睛】本题考查求三角函数解析式,考查函数的零点个数问题.掌握三角函数的性质如周期性质,最值是解本题的基础.本题零点问题可直接求出零点,然后由零点分析得出结论.21、(1)(2),【解析】
(1)利用同角三角函数间的基本关系化简函数解析式后,分三种情况、和讨论,根据二次函数求最小值的方法求出的最小值的值即可;(2)把代入到第一问的的第二和第三个解析式中,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026贵州贵阳南明区劳动人事争议仲裁院招聘备考题库附答案详解(巩固)
- 2026江西中江民爆器材有限公司招聘1人备考题库参考答案详解
- 2026浙江宁波报业传媒集团有限公司招聘2人备考题库及答案详解1套
- 2026湖北事业单位联考荆州区招聘123人备考题库含答案详解ab卷
- 2026浙江宁波甬开产城运营管理有限公司招聘4人备考题库附参考答案详解(满分必刷)
- 2026江苏苏州市吴中区社会福利中心招聘护理员1人备考题库附参考答案详解(巩固)
- 2026辽宁对外经贸学院电商与物流学院招聘专任教师备考题库附答案详解(能力提升)
- 反贿赂反腐败制度
- 托管制度视角下中国投资基金治理结构的优化路径研究
- 在建工程管理制度
- 非标压力容器培训课件
- (2025年)教育博士(EdD)教育领导与管理方向考试真题附答案
- 2026版二建《建设工程法规及相关知识》精讲课程讲义(完整打印版)
- 山西十五五规划
- 咯血的急救及护理
- 2025初三历史中考一轮复习资料大全
- 粮库安全生产工作计划
- 涉诉涉法信访课件
- 砂石料购销简单版的合同
- 春运安全行车知识培训课件
- 2025年湖北十堰武当山机场招聘笔试备考题库(带答案详解)
评论
0/150
提交评论