四川省仁寿一中南校区2026届高一下数学期末学业质量监测模拟试题含解析_第1页
四川省仁寿一中南校区2026届高一下数学期末学业质量监测模拟试题含解析_第2页
四川省仁寿一中南校区2026届高一下数学期末学业质量监测模拟试题含解析_第3页
四川省仁寿一中南校区2026届高一下数学期末学业质量监测模拟试题含解析_第4页
四川省仁寿一中南校区2026届高一下数学期末学业质量监测模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

四川省仁寿一中南校区2026届高一下数学期末学业质量监测模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1..设、是关于x的方程的两个不相等的实数根,那么过两点,的直线与圆的位置关系是()A.相离. B.相切. C.相交. D.随m的变化而变化.2.已知是等差数列,其中,,则公差()A. B. C. D.3.已知,,那么是()A.第一象限 B.第二象限 C.第三象限 D.第四象限4.若,则下列不等式成立的是A. B. C. D.5.已知各个顶点都在同一球面上的正方体的棱长为2,则这个球的表面积为()A. B. C. D.6.若,则下列不等式中不正确的是()A. B. C. D.7.已知圆:及直线:,当直线被截得的弦长为时,则等于()A. B. C. D.8.()A.0 B.1 C.-1 D.29.若直线与直线关于点对称,则直线恒过点()A. B. C. D.10.如图所示,墙上挂有边长为a的正方形木板,它的四个角的空白部分都是以正方形的顶点为圆心,半径为的圆弧,某人向此板投镖,假设每次都能击中木板,且击中木板上每个点的可能性都一样,则它击中阴影部分的概率是()A. B. C. D.与a的值有关联二、填空题:本大题共6小题,每小题5分,共30分。11.如图,为测量山高,选择和另一座山的山顶为测量观测点,从点测得的仰角,点的仰角以及;从点测得;已知山高,则山高__________.12.若,则=.13.若,,则的值为______.14.在中,,点在边上,若,的面积为,则___________15.在中,已知,则下列四个不等式中,正确的不等式的序号为____________①②③④16._____三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知.(1)求不等式的解集;(2)若关于的不等式能成立,求实数的取值范围.18.如图,在四棱柱中,侧棱底面,,,,,且点和分别为和的中点.(1)求证:平面;(2)求二面角的正弦值;(3)设为棱上的点,若直线和平面所成角的正弦值为,求线段的长.19.已知向量,,其中为坐标原点.(1)若,求向量与的夹角;(2)若对任意实数都成立,求实数的取值范围.20.已知数列满足,,.(1)求数列的通项公式;(2)设,求数列的前项和.21.已知直线与.(1)当时,求直线与的交点坐标;(2)若,求a的值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】直线AB的方程为.即,所以直线AB的方程为,因为,所以,所以,所以直线AB与圆可能相交,也可能相切,也可能相离.2、D【解析】

根据等差数列通项公式即可构造方程求得结果.【详解】故选:【点睛】本题考查等差数列基本量的计算,关键是熟练应用等差数列通项公式,属于基础题.3、C【解析】

根据,,可判断所在象限.【详解】,在三四象限.,在一三象限,故在第三象限答案为C【点睛】本题考查了三角函数在每个象限的正负,属于基础题型.4、C【解析】

利用的单调性直接判断即可。【详解】因为在上递增,又,所以成立。故选:C【点睛】本题主要考查了幂函数的单调性,属于基础题。5、A【解析】

先求出外接球的半径,再求球的表面积得解.【详解】由题得正方体的对角线长为,所以.故选A【点睛】本题主要考查多面体的外接球问题和球的表面积的计算,意在考查学生对这些知识的理解掌握水平和分析推理能力.6、C【解析】

,可得,则根据不等式的性质逐一分析选项,A:,,所以成立;B:,则,根据基本不等式以及等号成立的条件则可判断;C:且,根据可乘性可知结果;D:,根据乘方性可判断结果.【详解】A:由题意,不等式,可得,则,,所以成立,所以A是正确的;B:由,则,所以,因为,所以等号不成立,所以成立,所以B是正确的;C:由且,根据不等式的性质,可得,所以C不正确;D:由,可得,所以D是正确的,故选:C.【点睛】本题考查不等式的性质,不等式等号成立的条件,熟记不等式的性质是解题的关键,属于基础题.7、C【解析】

求出圆心到直线的距离,由垂径定理计算弦长可解得.【详解】由题意,圆心为,半径为2,圆心到直线的距离为,所以,解得.故选:C.【点睛】本题考查直线与圆相交弦长问题,解题方法由垂径定理得垂直,由勾股定理列式计算.8、A【解析】

直接利用三角函数的诱导公式化简求值.【详解】sin210°=sin(180°+30°)+cos60°=﹣sin30°+cos60°.故选A.【点睛】本题考查利用诱导公式化简求值,是基础的计算题.9、C【解析】

利用直线过定点可求所过的定点.【详解】直线过定点,它关于点的对称点为,因为关于点对称,故直线恒过点,故选C.【点睛】一般地,若直线和直线相交,那么动直线必过定点(该定点为的交点).10、C【解析】试题分析:本题考查几何概型问题,击中阴影部分的概率为.考点:几何概型,圆的面积公式.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】在△ABC中,,,在△AMC中,,由正弦定理可得,解得,在Rt△AMN中.12、【解析】.13、【解析】

求出,将展开即可得解.【详解】因为,,所以,所以.【点睛】本题主要考查了三角恒等式及两角和的正弦公式,考查计算能力,属于基础题.14、【解析】

由,的面积为可以求解出三角形,再通过,我们可以得出(两三角形等高)再利用正弦形式表示各自面积,即能得出的值.【详解】,的面积为,所以为等边三角形,又所以(等高),又所以填写2【点睛】已知三角形面积及一边一角,我们能把形成该角的另外一边算出,从而把三角形所有量都能计算出来(如果需要),求两角正弦值的比值,我们更多联想到正弦定理的公式,或面积公式.15、②③【解析】

根据,分当和两种情况分类讨论,每一类中利用正、余弦函数的单调性判断,特别注意,当时,.【详解】当时,在上是增函数,因为,所以,因为在上是减函数,且,所以,当时,且,因为在上是减函数,所以,而,所以.故答案为:②③【点睛】本题主要考查了正弦函数与余弦函数的单调性在三角形中的应用,还考查了运算求解的能力,属于中档题.16、【解析】

将写成,切化弦后,利用两角和差余弦公式可将原式化为,利用二倍角公式可变为,由可化简求得结果.【详解】本题正确结果:【点睛】本题考查利用三角恒等变换公式进行化简求值的问题,涉及到两角和差余弦公式、二倍角公式的应用.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(1)或.【解析】

(1)运用绝对值的意义,去绝对值,解不等式,求并集即可;(1)求得|t﹣1|+|1t+3|的最小值,原不等式等价为|x+l|﹣|x﹣m|的最大值,由绝对值不等式的性质,以及绝对值不等式的解法,可得所求范围.【详解】解:(1)由题意可得|x﹣1|+|1x+3|>4,当x≥1时,x﹣1+1x+3>4,解得x≥1;当x<1时,1﹣x+1x+3>4,解得0<x<1;当x时,1﹣x﹣1x﹣3>4,解得x<﹣1.可得原不等式的解集为(﹣∞,﹣1)∪(0,+∞);(1)由(1)可得|t﹣1|+|1t+3|,可得t时,|t﹣1|+|1t+3|取得最小值,关于x的不等式|x+l|﹣|x﹣m|≥|t﹣1|+|1t+3|(t∈R)能成立,等价为|x+l|﹣|x﹣m|的最大值,由|x+l|﹣|x﹣m|≤|m+1|,可得|m+1|,解得m或m.【点睛】本题考查绝对值不等式的解法和绝对值不等式的性质的运用,求最值,考查化简变形能力,以及运算能力,属于基础题.18、(1)证明见解析;(2);(3)【解析】

如图,以为原点建立空间直角坐标系,依题意可得,又因为分别为和的中点,得.(Ⅰ)证明:依题意,可得为平面的一个法向量,,由此可得,,又因为直线平面,所以平面(Ⅱ),设为平面的法向量,则,即,不妨设,可得,设为平面的一个法向量,则,又,得,不妨设,可得因此有,于是,所以二面角的正弦值为.(Ⅲ)依题意,可设,其中,则,从而,又为平面的一个法向量,由已知得,整理得,又因为,解得,所以线段的长为.考点:直线和平面平行和垂直的判定与性质,二面角、直线与平面所成的角,空间向量的应用.19、(1)或;(2)或.【解析】

(1)按向量数量积的定义先求夹角余弦,再求得夹角;(2)不等式化为恒成立,令取1和-1代入解不等式组即可得.【详解】(1)由题意,,记向量与的夹角为,又,则,当时,,,当时,,.(2),由得,∵,∴,∴,解得或.【点睛】本题考查向量模与夹角,考查不等式恒成立问题,不等式中把作为一个整体,它是关于的一次不等式,因此要使它恒成立,只要取1和-1时均成立即可.20、(1);(2)【解析】

(1)由,构造是以为首项,为公比等比数列,利用等比数列的通项公式可得结果;(2)由(1)得,利用裂项相消可求.【详解】(1)由得:,即,且数列

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论