版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届安徽省肥东中学数学高一下期末调研试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设向量,满足,,则()A.1 B.2 C.3 D.52.已知均为锐角,,则=A. B. C. D.3.设,是两条不同的直线,,,是三个不同的平面,给出下列四个命题:①若,,则②若,,,则③若,,则④若,,则其中正确命题的序号是()A.①和② B.②和③ C.③和④ D.①和④4.在一个平面上,机器人到与点的距离为8的地方绕点顺时针而行,它在行进过程中到经过点与的直线的最近距离为()A. B. C. D.5.下列说法正确的是()A.锐角是第一象限的角,所以第一象限的角都是锐角;B.如果向量,则;C.在中,记,,则向量与可以作为平面ABC内的一组基底;D.若,都是单位向量,则.6.若双曲线的渐近线与直线所围成的三角形面积为2,则该双曲线的离心率为()A. B. C. D.7.为等差数列的前项和,且,.记,其中表示不超过的最大整数,如,.数列的前项和为()A. B. C. D.8.袋子中有大小、形状完全相同的四个小球,分别写有“和”、“谐”、“校”、“园”四个字,有放回地从中任意摸出一个小球,直到“和”、“谐”两个字都摸到就停止摸球,用随机模拟的方法估计恰好在第三次停止摸球的概率。利用电脑随机产生到之间取整数值的随机数,分别用,,,代表“和”、“谐”、“校”、“园”这四个字,以每三个随机数为一组,表示摸球三次的结果,经随机模拟产生了以下组随机数:由此可以估计,恰好第三次就停止摸球的概率为()A. B. C. D.9.在中,角,,所对的边分别为,,,若,则的值为()A. B. C. D.10.已知圆,设平面区域,若圆心,且圆与轴相切,则的最大值为()A.5 B.29 C.37 D.49二、填空题:本大题共6小题,每小题5分,共30分。11.鲁班锁是中国传统的智力玩具,起源于古代汉族建筑中首创的榫卯结构,这种三维的拼插器具内部的凹凸部分(即榫卯结构)啮合,十分巧妙,外观看是严丝合缝的十字立方体,其上下、左右、前后完全对称.从外表上看,六根等长的正四棱柱体分成三组,经榫卯起来,如图3,若正四棱柱体的高为,底面正方形的边长为,现将该鲁班锁放进一个球形容器内,则该球形容器的表面积的最小值为__________.(容器壁的厚度忽略不计)12.把数列的所有数按照从大到小的原则写成如下数表:第行有个数,第行的第个数(从左数起)记为,则________.13.已知扇形的半径为6,圆心角为,则扇形的弧长为______.14.将函数的图象向左平移个单位长度,得到函数的图象,则__________.15.把正整数排列成如图甲所示的三角形数阵,然后擦去偶数行中的奇数和奇数行中的偶数,得到如图乙所示的三角形数阵,再把图乙中的数按从小到大的顺序排成一列,得到一个数列,若,则________________.16.已知锐角、满足,,则的值为______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如下图,长方体ABCD-A1B1C1D1中,(1)当点E在AB上移动时,三棱锥D-D(2)当点E在AB上移动时,是否始终有D118.已知数列中,,点在直线上,其中.(1)令,求证数列是等比数列;(2)求数列的通项;(3)设、分别为数列、的前项和是否存在实数,使得数列为等差数列?若存在,试求出,若不存在,则说明理由.19.设两个非零向量与不共线,(1)若,,,求证:三点共线;(2)试确定实数,使和同向.20.某地区有小学21所,中学14所,现采用分层抽样的方法从这些学校中抽取5所学校,对学生进行视力检查.(1)求应从小学、中学中分别抽取的学校数目;(2)若从抽取的5所学校中抽取2所学校作进一步数据分析:①列出所有可能抽取的结果;②求抽取的2所学校至少有一所中学的概率.21.数列的前项和.(1)求数列的通项公式;(2)设,求数列的前项和.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】
将等式进行平方,相加即可得到结论.【详解】∵||,||,∴分别平方得2•10,2•6,两式相减得4•10﹣6=4,即•1,故选A.【点睛】本题主要考查向量的基本运算,利用平方进行相加是解决本题的关键,比较基础.2、A【解析】因为,所以,又,所以,则;因为且,所以,又,所以;则====;故选A.点睛:三角函数式的化简要遵循“三看”原则(1)一看“角”,这是最重要的一环,通过看角之间的区别和联系,把角进行合理的拆分,从而正确使用公式;(2)而看“函数名称”看函数名称之间的差异,从而确定使用公式,常见的有“切化弦”;(3)三看“结构特征”,分析结构特征,可以帮助我们找到变形的方向,如“遇到分式通分”等.3、A【解析】
根据线面平行性质定理,结合线面垂直的定义,可得①是真命题;根据面面平行的性质结合线面垂直的性质,可得②是真命题;在正方体中举出反例,可得平行于同一个平面的两条直线不一定平行,垂直于同一个平面和两个平面也不一定平行,可得③④不正确.由此可得本题的答案.【详解】解:对于①,因为,所以经过作平面,使,可得,又因为,,所以,结合得.由此可得①是真命题;对于②,因为且,所以,结合,可得,故②是真命题;对于③,设直线、是位于正方体上底面所在平面内的相交直线,而平面是正方体下底面所在的平面,则有且成立,但不能推出,故③不正确;对于④,设平面、、是位于正方体经过同一个顶点的三个面,则有且,但是,推不出,故④不正确.综上所述,其中正确命题的序号是①和②故选:【点睛】本题给出关于空间线面位置关系的命题,要我们找出其中的真命题,着重考查了线面平行、面面平行的性质和线面垂直、面面垂直的判定与性质等知识,属于中档题.4、A【解析】
由题意知机器人的运行轨迹为圆,利用圆心到直线的距离求出最近距离.【详解】解:机器人到与点距离为8的地方绕点顺时针而行,在行进过程中保持与点的距离不变,机器人的运行轨迹方程为,如图所示;与,直线的方程为,即为,则圆心到直线的距离为,最近距离为.故选.【点睛】本题考查了直线和圆的位置关系,以及点到直线的距离公式,属于基础题.5、C【解析】
可举的角在第一象限,但不是锐角,可判断A;考虑两向量是否为零向量,可判断B;由不共线,推得与不共线,可判断C;考虑两向量的方向可判断D,得到答案.【详解】对于A,锐角是第一象限的角,但第一象限的角不一定为锐角,比如的角在第一象限,但不是锐角,故A错误;对于B,如果两个非零向量满足,则,若存在零向量,结论不一定成立,故B错误;对于C,在中,记,可得与不共线,则向量与可以作为平面内的一组基底,故C正确;对于D,若都是单位向量,且方向相同时,;若方向不相同,结论不成立,所以D错误.故选C.【点睛】本题主要考查了命题的真假判断,主要是向量共线和垂直的条件,着重考查了判断能力和分析能力,属于基础题.6、A【解析】渐近线为,时,,所以,即,,,故选A.7、D【解析】
利用等差数列的通项公式与求和公式可得,再利用,可得,,.即可得出.【详解】解:为等差数列的前项和,且,,.可得,则公差.,,则,,,.数列的前项和为:.故选:.【点睛】本题考查了等差数列的通项公式与求和公式、对数运算性质、取整函数,考查了推理能力与计算能力,属于中档题.8、B【解析】
随机模拟产生了18组随机数,其中第三次就停止摸球的随机数有4个,由此可以估计,恰好第三次就停止摸球的概率.【详解】随机模拟产生了以下18组随机数:343432341342234142243331112342241244431233214344142134其中第三次就停止摸球的随机数有:142,112,241,142,共4个,由此可以估计,恰好第三次就停止摸球的概率为p.故选:B.【点睛】本题考查概率的求法,考查列举法等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.9、B【解析】
化简式子得到,利用正弦定理余弦定理原式等于,代入数据得到答案.【详解】利用正弦定理和余弦定理得到:故选B【点睛】本题考查了正弦定理,余弦定理,三角恒等变换,意在考查学生的计算能力.10、C【解析】试题分析:作出可行域如图,圆C:(x-a)2+(y-b)2=1的圆心为,半径的圆,因为圆心C∈Ω,且圆C与x轴相切,可得,所以所以要使a2+b2取得的最大值,只需取得最大值,由图像可知当圆心C位于B点时,取得最大值,B点的坐标为,即时是最大值.考点:线性规划综合问题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】表面积最小的球形容器可以看成长、宽、高分别为1、2、6的长方体的外接球.设其半径为R,,所以该球形容器的表面积的最小值为.【点睛】将表面积最小的球形容器,看成其中两个正四棱柱的外接球,求其半径,进而求体积.12、【解析】
第行有个数知每行数的个数成等比数列,要求,先要求出,就必须求出前行一共出现了多少个数,根据等比数列的求和公式可求,而由可知,每一行数的分母成等差数列,可求出,令,即可求出.【详解】由第行有个数,可知每一行数的个数成等比数列,首项是,公比是,所以,前行共有个数,所以,第行第一个数为,,因此,.故答案为:.【点睛】本题考查数列的性质和应用,解题时要注意数阵的应用,同时要找出数阵的规律,考查推理能力,属于中等题.13、【解析】
先将角度化为弧度,再根据弧长公式求解.【详解】因为圆心角,所以弧长.故答案为:【点睛】本题考查了角度和弧度的互化以及弧长公式的应用问题,属于基础题.14、【解析】
先利用辅助角公式将函数的解析式化简,根据三角函数的变化规律求出函数的解析式,即可计算出的值.【详解】,由题意可得,因此,,故答案为.【点睛】本题考查辅助角公式化简、三角函数图象变换,在三角图象相位变换的问题中,首先应该将三角函数的解析式化为(或)的形式,其次要注意左加右减指的是在自变量上进行加减,考查计算能力,属于中等题.15、【解析】
由图乙可得:第行有个数,且第行最后的一个数为,从第三行开始每一行的数从左到右都是公差为的等差数列,注意到,,据此确定n的值即可.【详解】分析图乙,可得①第行有个数,则前行共有个数,②第行最后的一个数为,③从第三行开始每一行的数从左到右都是公差为的等差数列,又由,,则,则出现在第行,第行第一个数为,这行中第个数为,前行共有个数,则为第个数.故填.【点睛】归纳推理是由部分到整体、由特殊到一般的推理,由归纳推理所得的结论不一定正确,通常归纳的个体数目越多,越具有代表性,那么推广的一般性命题也会越可靠,它是一种发现一般性规律的重要方法.16、【解析】
计算出角的取值范围,利用同角三角函数的平方关系计算出的值和的值,然后利用两角差的余弦公式可计算出的值.【详解】由题意可知,,,,则,.因此,.故答案为.【点睛】本题考查利用两角差的余弦公式求值,同时也考查了同角三角函数的平方关系求值,解题时要明确所求角与已知角之间的关系,合理利用公式是解题的关键,考查运算求解能力,属于中等题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)13【解析】(I)三棱锥D-D∵∴V(II)当点E在AB上移动时,始终有D1证明:连接AD1,∵四边形∴A1∵AE⊥平面ADD1A1,∴A1又AB∩AD1=A,AB⊂∴A1D⊥平面又D1E⊂平面∴D118、(1)证明过程见详解;(2);(3)存在实数,使得数列为等差数列.【解析】
(1)先由题意得到,再由,得到,即可证明结论成立;(2)先由(1)求得,推出,利用累加法,即可求出数列的通项;(3)把数列an}、{bn}通项公式代入an+2bn,进而得到Sn+2T的表达式代入Tn,进而推断当且仅当λ=2时,数列是等差数列.【详解】(1)因为点在直线上,所以,因此由得所以数列是以为公比的等比数列;(2)因为,由得,故,由(1)得,所以,即,所以,,…,,以上各式相加得:所以;(3)存在λ=2,使数列是等差数列.由(Ⅰ)、(Ⅱ)知,an+2bn=n﹣2∴又=∴,∴当且仅当λ=2时,数列是等差数列.【点睛】本题主要考查等差数列与等比数列的综合,熟记等比数列的定义,等比数列的通项公式,以及等差数列与等比数列的求和公式即可,属于常考题型.19、(1)证明见解析(2)【解析】
(1)根据向量的运算可得,再根据平面向量共线基本定理即可证明三点共线;(2)根据平面向量共线基本定理,可设,由向量相等条件可得关于和的方程组,解方程组并由的条件确定实数的值.【详解】(1)证明:因为,,,所以.所以共线,又因为它们有公共点,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 磁共振影像课件
- 碧桂园工程培训
- 短歌行和归园田居课件
- 盾构管片验收规范培训
- 2026年旅游规划与管理旅游目的地开发与运营策略综合测试
- 2026年英语语法及词汇运用题含英语考试高频考点
- 2026年企业风险管理试题集含风险识别与应对
- 2026年雅思考试预测模拟试题集及答案
- 2026年网络技术与网络安全管理实践试题
- 2026年财务成本控制经理中级专业知识测试题
- 2026四川凉山州雷波县粮油贸易总公司面向社会招聘6人考试参考题库及答案解析
- 2024-2025学年广东省广州市越秀区九年级上学期期末数学试卷(含答案)
- 2026北京海淀初二上学期期末英语试卷和答案
- 多进制LDPC码编译码算法:从理论到硬件实现的深度剖析
- 2025年医院财务部工作总结及2026年工作计划
- 基于新课程标准的小学数学“教学评一致性”实践与研究课题开题报告
- 2026省考广西试题及答案
- 中国临床肿瘤学会(csco)乳腺癌诊疗指南2025
- 2025年(第十二届)输电技术大会:基于可重构智能表面(RIS)天线的相控阵无线通信技术及其在新型电力系统的应用
- 带压开仓培训课件
- 护理儿科中医题库及答案解析
评论
0/150
提交评论