版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
福建省厦门市2026届高一数学第二学期期末教学质量检测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若平面向量a与b的夹角为60°,|b|=4,(aA.2B.4C.6D.122.等差数列中,已知,则()A.1 B.2 C.3 D.43.等比数列的前项和为,若,则公比()A. B. C. D.4.若,则一定有()A. B. C. D.5.已知曲线,如何变换可得到曲线()A.把上各点的横坐标伸长到原来的倍,再向右平移个单位长度B.把上各点的横坐标伸长到原来的倍,再向左平移个单位长度C.把上各点的横坐标缩短到原来的倍,再向右平移个单位长度D.把上各点的横坐标缩短到原来的倍,再向左平移个单位长度6.若,则下列结论不正确的是()A. B. C. D.7.如图所示,在正方体ABCD—A1B1C1D1中,若E是A1C1的中点,则直线CE垂直于()A.AC B.A1D1 C.A1D D.BD8.已知函数的部分图象如图所示,则()A. B.C. D.9.设全集,集合,,则()A. B.C. D.10.已知数列满足,,则数列的前10项和为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.公比为的无穷等比数列满足:,,则实数的取值范围为________.12.程序:的最后输出值为___________________.13.已知数列中,,,,则的值为_____.14.已知棱长都相等正四棱锥的侧面积为,则该正四棱锥内切球的表面积为________.15.已知不等式的解集为,则________.16.已知函数,为的反函数,则_______(用反三角形式表示).三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知圆与直线相切(1)若直线与圆交于两点,求(2)已知,设为圆上任意一点,证明:为定值18.在中,内角,,所对的边分别为,,且.(1)求角的大小;(2)若,,求的面积.19.如图是一景区的截面图,是可以行走的斜坡,已知百米,是没有人行路(不能攀登)的斜坡,是斜坡上的一段陡峭的山崖.假设你(看做一点)在斜坡上,身上只携带着量角器(可以测量以你为顶点的角).(1)请你设计一个通过测量角可以计算出斜坡的长的方案,用字母表示所测量的角,计算出的长,并化简;(2)设百米,百米,,,求山崖的长.(精确到米)20.如图,在三棱锥中,,分别为,的中点,且.(1)证明:平面;(2)若平面平面,证明:.21.已知函数()的一段图象如图所示.(1)求函数的解析式;(2)若,求函数的值域.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】∵(a+2b)·(a-3b)=-72,∴2、B【解析】
已知等差数列中一个独立条件,考虑利用等差中项求解.【详解】因为为等差数列,所以,由,,故选B.【点睛】本题考查等差数列的性质,等差数列中若,则,或用基本量、表示,整体代换计算可得,属于简单题.3、A【解析】
将转化为关于的方程,解方程可得的值.【详解】∵,∴,又,∴.故选A.【点睛】本题考查等比数列的基本运算,等比数列中共有五个量,其中是基本量,这五个量可“知三求二”,求解的实质是解方程或解方程组.4、C【解析】
由题,可得,且,即,整理后即可得到作出判断【详解】由题可得,则,因为,则,,则有,所以,即故选C【点睛】本题考查不等式的性质的应用,属于基础题5、D【解析】
用诱导公式把两个函数名称化为相同,然后再按三角函数图象变换的概念判断.【详解】,∴可把的图象上各点的横坐标缩短到原来的倍,再向左平移个单位长度或先向左平移个单位,再把图象上各点的横坐标缩短到原来的倍(纵坐标不变)可得的图象,故选:D.【点睛】本题考查三角函数的图象变换,解题时首先需要函数的前后名称相同,其次平移变换与周期变换的顺序不同时,平移的单位有区别.向左平移个单位所得图象的函数式为,而不是.6、C【解析】
A、B利用不等式的基本性质即可判断出;C利用指数函数的单调性即可判断出;D利用基本不等式的性质即可判断出.【详解】A,
∵b<a<0,∴−b>−a>0,∴,正确;B,∵b<a<0,∴,正确;C,
,因此C不正确;D,,正确,综上可知:只有C不正确,故选:C.【点睛】本题主要考查不等式的基本性质,属于基础题.解答过程注意考虑参数的正负,确定不等号的方向是解题的关键.7、D【解析】
在正方体内结合线面关系证明线面垂直,继而得到线线垂直【详解】,平面,平面,则平面又因为平面则故选D【点睛】本题考查了线线垂直,在求解过程中先求得线面垂直,由线面垂直的性质可得线线垂直,从而得到结果8、D【解析】
由函数的最值求出A,由周期求出,由五点法作图求出的值,从而得出结论.【详解】根据函数的图象求出函数的周期,然后可以求出,通过函数经过的最大值点求出值,即可得到函数的解析式.由函数的图象可知:,
.
当,函数取得最大值1,所以,
,
故选D.9、A【解析】
进行交集、补集的运算即可.【详解】∁UB={x|﹣2<x<1};∴A∩(∁UB)={x|﹣1<x<1}.故选:A.【点睛】考查描述法的定义,以及交集、补集的运算.10、C【解析】
由判断出数列是等比数列,再求出,利用等比数列前项和公式求解即可.【详解】由,得,所以数列是以为公比的等比数列,又,所以,由等比数列前项和公式,.故选:C【点睛】本题主要考查等比数列的定义和等比数列前项和公式的应用,考查学生的计算能力,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
依据等比数列的定义以及无穷等比数列求和公式,列出方程,即可求出的表达式,再利用求值域的方法求出其范围。【详解】由题意有,即,因为,所以。【点睛】本题主要考查无穷等比数列求和公式的应用以及基本函数求值域的方法。12、4;【解析】
根据赋值语句的作用是将表达式所代表的值赋给变量,然后语句的顺序可求出的值.【详解】解:执行程序语句:
=1后,=1;
=+1后,=2;
=+2后,=4;
后,输出值为4;
故答案为:4【点睛】本题主要考查了赋值语句的作用,解题的关键对赋值语句的理解,属于基础题.13、1275【解析】
根据递推关系式可求得,从而利用并项求和的方法将所求的和转化为,利用等差数列求和公式求得结果.【详解】由得:则,即本题正确结果:【点睛】本题考查并项求和法、等差数列求和公式的应用,关键是能够利用递推关系式得到数列相邻两项之间的关系,从而采用并项的方式来进行求解.14、【解析】
根据侧面积求出正四棱锥的棱长,画出组合体的截面图,根据三角形的相似求得四棱锥内切球的半径,于是可得内切球的表面积.【详解】设正四棱锥的棱长为,则,解得.于是该正四棱锥内切球的大圆是如图△PMN的内切圆,其中,.∴.设内切圆的半径为,由∽,得,即,解得,∴内切球的表面积为.【点睛】与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.15、-7【解析】
结合一元二次不等式和一元二次方程的性质,列出方程组,求得的值,即可得到答案.【详解】由不等式的解集为,可得,解得,所以.故答案为:.【点睛】本题主要考查了一元二次不等式的解法,以及一元二次方程的性质,其中解答中熟记一元二次不等式的解法是解答的关键,着重考查了推理与运算能力,属于基础题.16、【解析】
先将转化为,,然后求出即可【详解】因为所以所以所以所以把与互换可得即所以故答案为:【点睛】本题考查的是反函数的求法,较简单三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)4;(2)详见解析.【解析】
(1)利用直线与圆相切,结合点到直线距离公式求出半径,从而得到圆的方程;根据直线被圆截得弦长的求解方法可求得结果;(2)设,则,利用两点间距离公式表示出,化简可得结果.【详解】(1)由题意知,圆心到直线的距离:圆与直线相切圆方程为:圆心到直线的距离:,(2)证明:设,则即为定值【点睛】本题考查直线与圆的综合应用问题,涉及到直线与圆位置关系的应用、直线被圆截得弦长的求解、两点间距离公式的应用、定值问题的求解.解决定值问题的关键是能够用变量表示出所求量,通过化简、消元整理出结果.18、(1)(2)【解析】
(1)由正弦定理以及两角差的余弦公式得到,由特殊角的三角函数值得到结果;(2)结合余弦定理和面积公式得到结果.【详解】(1)由正弦定理得,∵,∴,即,∴又∵,∴.(2)∵∴.∴,∴.【点睛】本题主要考查正弦定理及余弦定理的应用以及三角形面积公式,属于难题.在解与三角形有关的问题时,正弦定理、余弦定理是两个主要依据.解三角形时,有时可用正弦定理,有时也可用余弦定理,应注意用哪一个定理更方便、简捷一般来说,当条件中同时出现及、时,往往用余弦定理,而题设中如果边和正弦、余弦函数交叉出现时,往往运用正弦定理将边化为正弦函数再结合和、差、倍角的正余弦公式进行解答.19、(1)米,详见解析(2)205米【解析】
(1)由题意测得,,在中利用正弦定理求得的值;(2)解法一,中由余弦定理求得,中求得和的值,在中利用余弦定理求得的值.解法二,中求得,中利用余弦定理求得,利用三角恒等变换求得,在中利用余弦定理求得的值.【详解】解:(1)据题意,可测得,,在中,由正弦定理,有,即.解得(米).(2)解一:在中,百米,百米,百米,由余弦定理,可得,解得,∴.又由已知,在中,,可解得,从而的.∵,在中,由余弦定理得米所以,的长度约为205米.解二:(2)在中,求得.在中,由余弦定理,得,进而得,再由可求得,.在中,由余弦定理,得.所以,的长度约为205米.【点睛】本题考查了三角恒等变换与解三角形的应用问题,也考查了三角函数模型应用问题,是中档题.20、(1)见解析(2)见解析【解析】
(1)先证明,再证明平面;(2)先证明平面,再证明.【详解】证明:(1)因为,分别为,的中点,所以.又平面,平面,所以平面.(2)因为,为中点,所以.又平面平面.平面平面,所以平面.又平面,所
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论