版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届黑龙江省克东一中、克山一中等五校联考高一数学第二学期期末考试模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.的内角的对边分别为,,,若的面积为,则A. B. C. D.2.下列关于极限的计算,错误的是()A.B.C.D.已知,则3.已知关于的不等式的解集是,则的值是()A. B. C. D.4.如图所示,4个散点图中,不适合用线性回归模型拟合其中两个变量的是()A. B.C. D.5.已知,,则在方向上的投影为()A. B. C. D.6.设正实数满足,则当取得最大值时,的最大值为()A.0 B.1 C. D.37.下列赋值语句正确的是()A.S=S+i2 B.A=-AC.x=2x+1 D.P=8.已知一几何体的三视图,则它的体积为()A. B. C. D.9.已知在中,两直角边,,是内一点,且,设,则()A. B. C.3 D.10.设函数是上的偶函数,且在上单调递减.若,,,则,,的大小关系为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.等差数列前9项的和等于前4项的和.若,则.12.已知,,且,则的最小值为________.13.关于的不等式,对于恒成立,则实数的取值范围为_______.14.在△ABC中,点M,N满足,若,则x=________,y=________.15.已知的三边分别是,且面积,则角__________.16.如图,四棱锥中,所有棱长均为2,是底面正方形中心,为中点,则直线与直线所成角的余弦值为____________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在中,分别是内角所对的边,已知.(1)求角;(2)若,求的周长.18.若是的一个内角,且,求的值.19.在中,分别是所对的边,若的面积是,,.求的长.20.已知,且,向量,.(1)求函数的解析式,并求当时,的单调递增区间;(2)当时,的最大值为5,求的值;(3)当时,若不等式在上恒成立,求实数的取值范围.21.已知动点到定点的距离与到定点的距离之比为.(1)求动点的轨迹的方程;(2)过点作轨迹的切线,求该切线的方程.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】分析:利用面积公式和余弦定理进行计算可得。详解:由题可知所以由余弦定理所以故选C.点睛:本题主要考查解三角形,考查了三角形的面积公式和余弦定理。2、B【解析】
先计算每个极限,再判断,如果是数列和的极限还需先求和,再求极限.【详解】,A正确;∵,∴,B错;,C正确;若,需按奇数项和偶数项分别求和后再极限,即,D正确.故选:B.【点睛】本题考查数列的极限,掌握极限运算法则是解题基础.在求数列前n项和的极限时,需先求出数列的前n项和,再对和求极限,不能对每一项求极限再相加.3、A【解析】
先利用韦达定理得到关于a,b的方程组,解方程组即得a,b的值,即得解.【详解】由题得,所以a+b=7.故选:A【点睛】本题主要考查一元二次不等式的解集,意在考查学生对该知识的理解掌握水平和分析推理能力.4、A【解析】
根据线性回归模型建立方法,分析选项,找出散点比较分散且无任何规律的选项可得答案.【详解】根据题意,适合用线性回归拟合其中两个变量的散点图必须散点分布比较集中,且大体接近某一条直线,分析选项可得A选项的散点图杂乱无章,最不符合条件.故选A【点睛】本题考查了统计案例散点图,属于基础题.5、A【解析】在方向上的投影为,选A.6、B【解析】
x,y,z为正实数,且,根据基本不等式得,当且仅当x=2y取等号,所以x=2y时,取得最大值1,此时,,当时,取最大值1,的最大值为1,故选B.7、B【解析】在程序语句中乘方要用“^”表示,所以A项不正确;乘号“*”不能省略,所以C项不正确;D项中应用SQR(x)表示,所以D项不正确;B选项是将变量A的相反数赋给变量A,则B项正确.选B.8、C【解析】所求体积,故选C.9、A【解析】分析:建立平面直角坐标系,分别写出B、C点坐标,由于∠DAB=60°,设D点坐标为(m,),由平面向量坐标表示,可求出λ和μ.详解:如图以A为原点,以AB所在的直线为x轴,以AC所在的直线为y轴建立平面直角坐标系,则B点坐标为(1,0),C点坐标为(0,2),因为∠DAB=60°,设D点坐标为(m,),=λ(1,0)+μ(0,2)=(λ,2μ)⇒λ=m,μ=,则.故选A.点睛:本题主要考察平面向量的坐标表示,根据条件建立平面直角坐标系,分别写出各点坐标,属于中档题.10、B【解析】
根据偶函数的定义可变形,再直接比较的大小关系,即可利用函数的单调性得出,,的大小关系.【详解】因为函数是上的偶函数,所以,而,函数在上单调递减,所以.故选:B.【点睛】本题主要考查函数的性质的应用,涉及奇偶性,指数函数,对数函数的单调性,以及对数的运算性质的应用,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、10【解析】
根据等差数列的前n项和公式可得,结合等差数列的性质即可求得k的值.【详解】因为,且所以由等差数列性质可知因为所以则根据等差数列性质可知可得【点睛】本题考查了等差数列的前n项和公式,等差数列性质的应用,属于基础题.12、【解析】
由,可得,然后利用基本不等式可求出最小值.【详解】因为,所以,当且仅当,时取等号.【点睛】利用基本不等式求最值必须具备三个条件:①各项都是正数;②和(或积)为定值;③等号取得的条件.13、或【解析】
利用换元法令,则对任意的恒成立,再对分两种情况讨论,令求出函数的最小值,即可得答案.【详解】令,则对任意的恒成立,(1)当,即时,上式显然成立;(2)当,即时,令①当时,,显然不成立,故不成立;②当时,,∴解得:综上所述:或.故答案为:或.【点睛】本题考查含绝对值函数的最值问题,考查函数与方程思想、转化与化归思想、分类讨论思想、数形结合思想,考查逻辑推理能力和运算求解能力,求解时注意分段函数的最值求解.14、【解析】特殊化,不妨设,利用坐标法,以A为原点,AB为轴,为轴,建立直角坐标系,,,则,.考点:本题考点为平面向量有关知识与计算,利用向量相等解题.15、【解析】试题分析:由,可得,整理得,即,所以.考点:余弦定理;三角形的面积公式.16、.【解析】
以为原点,为轴,为轴,为轴,建立空间直角坐标系,利用向量法能求出直线与直线所成角的余弦值.【详解】解:四棱锥中,所有棱长均为2,是底面正方形中心,为中点,,平面,以为原点,为轴,为轴,为轴,建立如图所示的空间直角坐标系,则,,,,,∴,,设直线与直线所成角为,则,直线与直线所成角的余弦值为.故答案为:.【点睛】本题主要考查异面直线所成角的余弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,属于中档题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)6【解析】
(1)由条件利用正弦定理求B的某个函数值,结合B的范围确定B的大小.(2)由(1)及求得ac,再利用余弦定理可得.【详解】解:(1)因为,由正弦定理可得,又,所以,则,因为,所以;(2)由已知,所以,由余弦定理得,所以,则,因此的周长为6.【点睛】本题考查正弦定理、余弦定理及三角形面积计算,有时利用整体运算可以起到事半功倍的作用,考查计算能力,属于中档题.18、【解析】
本题首先可根据是的一个内角以及得出和,然后对进行平方并化简可得,最后结合即可得出结果.【详解】因为是的一个内角,所以,,因为,所以,,所以,所以.【点睛】本题考查同角三角函数关系的应用,考查的公式为,在运算的过程中一定要注意角的取值范围,考查推理能力,是简单题.19、8【解析】
利用同角三角函数的基本关系式求得,利用三角形的面积公式列方程求得,结合求得,根据余弦定理求得的长.【详解】由()得.因为的面积是,则,所以由解得.由余弦定理得,即的长是.【点睛】本小题主要考查同角三角函数的基本关系式,考查三角形的面积公式,考查余弦定理解三角形.20、(1),单调增区间为;(2)或;(3).【解析】试题分析:(Ⅰ)化简,解不等式求得的范围即得增区间(2)讨论a的正负,确定最大值,求a;(3)化简绝对值不等式,转化在上恒成立,即,求出在上的最大值,最小值即得解.试题解析:(1)∵∴∴单调增区间为(2)当时,若,,∴若,,∴∴综上,或.(3)在上恒成立,即在上恒成立,∴在上最大值2,最小值,∴∴的取值范围.点睛:本题考查了平面向量的数量积的应用,三角函数的单调性与最值,三角函数的化简,恒成立问题的处理及分类讨论的数学思想,综合性强.21、(1),(2)或【解析】
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 磁场和磁路课件
- 2026年计算机科学专业期末考试试题库网络基础协议测试
- 2026年语言类专业英语训练英语单词拼写练习及语音听力练习
- 2026年社交媒体运营策略与技巧考核题集
- 2026年心理咨询师职业能力测试题库心理评估与诊断技能考察
- 2026年建筑设计院设计理论模拟考试题
- 2026年物流管理专业题库仓储与配送优化策略
- 2026年职业资格认证考试综合练习题集
- 2026年经济师考试宏观经济分析计算题库
- 2026年中小学生学科知识竞赛试题
- 2026年及未来5年市场数据中国机械式停车设备行业市场全景分析及投资战略规划报告
- 泥浆压滤施工方案(3篇)
- 李时珍存世墨迹初探──《李濒湖抄医书》的考察
- 肺源性心脏病诊疗指南(2025年版)
- 医院行风建设培训会课件
- 非药品类易制毒化学品经营企业年度自查细则
- 太阳能建筑一体化原理与应 课件 第5章 太阳能集热器
- 住院患者节前安全宣教
- 2026春人教版英语八下单词表(先鸟版)
- 汽车装潢贴膜合同范本
- 签字版离婚协议书范本
评论
0/150
提交评论