版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广西柳江中学2026届高一下数学期末综合测试试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若直线与平行,则实数的值为()A.或 B. C. D.2.已知等边三角形ABC的边长为1,,那么().A.3 B.-3 C. D.3.设为等比数列,给出四个数列:①,②,③,④.其中一定为等比数列的是()A.①③ B.②④ C.②③ D.①②4.已知,,则()A.2 B. C.4 D.5.某人打靶时连续射击两次,事件“至少有一次中靶”的互斥事件是()A.至多有一次中靶B.只有一次中靶C.两次都中靶D.两次都不中靶6.大衍数列,来源于《乾坤普》中对易传“大衍之数五十”的推论,主要用于解释中国传统文化中太极衍生原理.数列中的每一项,都代表太极衍生过程中,曾经经历过的两翼数量总和,是中国传统文化中隐藏着的世界数学史上第一道数列题.其前10项依次是0,2,4,8,12,18,24,32,40,50,……则此数列的第20项为()A.200 B.180 C.128 D.1627.已知,若关于x的不等式的解集为,则()A. B. C.1 D.78.已知角的顶点在坐标原点,始边与轴正半轴重合,终边经过点,则()A. B. C. D.9.已知圆经过点,且圆心为,则圆的方程为A. B.C. D.10.函数(其中)的图象如图所示,为了得到的图象,只需把的图象上所有的点()A.向右平移个单位长度 B.向左平移个单位长度C.向右平移个单位长度 D.向左平移个单位长度二、填空题:本大题共6小题,每小题5分,共30分。11.下列说法中:①若,满足,则的最大值为;②若,则函数的最小值为③若,满足,则的最小值为④函数的最小值为正确的有__________.(把你认为正确的序号全部写上)12.一个扇形的半径是,弧长是,则圆心角的弧度数为________.13.设向量是两个不共线的向量,若与共线,则_______.14.在《九章算术·商功》中将四个面均为直角三角形的三棱锥称为鳖臑(biēnào),在如下图所示的鳖臑中,,,,则的直角顶点为______.15.异面直线,所成角为,过空间一点的直线与直线,所成角均为,若这样的直线有且只有两条,则的取值范围为___________________.16.已知点在直线上,则的最小值为__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数f(x)=x2+(x-1)|x-a|.(1)若a=-1,解方程f(x)=1;(2)若函数f(x)在R上单调递增,求实数a的取值范围;(3)是否存在实数a,使不等式f(x)≥2x-3对任意x∈R恒成立?若存在,求出a的取值范围;若不存在,请说明理由.18.已知向量且,(1)求向量与的夹角;(2)求的值.19.记为等差数列的前项和,已知,.(Ⅰ)求的通项公式;(Ⅱ)求,并求的最小值.20.已知,,(1)求的解析式,并求出的最大值;(2)若,求的最小值和最大值,并指出取得最值时的值.21.已知的内角A,B,C所对的边分别为a,b,c,其外接圆的面积为,且.(1)求边长c;(2)若的面积为,求的周长.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】
利用直线与直线平行的性质求解.【详解】∵直线与平行,解得a=2或a=﹣2.∵当a=﹣2时,两直线重合,∴a=2.故选B.【点睛】本题考查满足条件的实数值的求法,是基础题,解题时要注意两直线的位置关系的合理运用.2、D【解析】
利用向量的数量积即可求解.【详解】解析:.故选:D【点睛】本题考查了向量的数量积,注意向量夹角的定义,属于基础题.3、D【解析】
设,再利用等比数列的定义和性质逐一分析判断每一个选项得解.【详解】设,①,,所以数列是等比数列;②,,所以数列是等比数列;③,不是一个常数,所以数列不是等比数列;④,不是一个常数,所以数列不是等比数列.故选D【点睛】本题主要考查等比数列的判定,意在考查学生对该知识的理解掌握水平和分析推理能力.4、C【解析】
先求出的坐标,再利用向量的模的公式求解.【详解】由题得=(0,4)所以.故选C【点睛】本题主要考查向量的坐标的求法和向量的模的计算,意在考查学生对这些知识的理解掌握水平和分析推理能力.5、D【解析】
根据互斥事件的定义逐个分析即可.【详解】“至少有一次中靶”与“至多有一次中靶”均包含中靶一次的情况.故A错误.“至少有一次中靶”与“只有一次中靶”均包含中靶一次的情况.故B错误.“至少有一次中靶”与“两次都中靶”均包含中靶两次的情况.故C错误.根据互斥事件的定义可得,事件“至少有一次中靶”的互斥事件是“两次都不中靶”.故选:D【点睛】本题主要考查了互斥事件的辨析,属于基础题型.6、A【解析】
由0、2、4、8、12、18、24、32、40、50…,可得偶数项的通项公式:,即可得出.【详解】由0、2、4、8、12、18、24、32、40、50…,可得偶数项的通项公式:,则此数列第20项=2×102=1.故选:A.【点睛】本题考查了数列递推关系、通项公式、归纳法,属于基础题.7、B【解析】
由韦达定理列方程求出,即可得解.【详解】由已知及韦达定理可得,,,即,,所以.故选:.【点睛】本题考查一元二次方程和一元二次不等式的关系、韦达定理的应用等,属于一般基础题.8、B【解析】
先由角的终边过点,求出,再由二倍角公式,即可得出结果.【详解】因为角的顶点在坐标原点,始边与轴正半轴重合,终边经过点,所以,因此.故选B【点睛】本题主要考查三角函数的定义,以及二倍角公式,熟记三角函数的定义与二倍角公式即可,属于常考题型.9、D【解析】
先计算圆半径,然后得到圆方程.【详解】因为圆经过,且圆心为所以圆的半径为,则圆的方程为.故答案选D【点睛】本题考查了圆方程,先计算半径是解题的关键.10、D【解析】
由图象求得函数解析式的参数,再利用诱导公式将异名函数化为同名函数根据图象间平移方法求解.【详解】由图象可知,又,所以,又因为,所以,所以,又因为,又,所以所以又因为故选D.【点睛】本题考查由图象确定函数的解析式和正弦函数和余弦函数图象之间的平移,关键在于将异名函数化为同名函数,属于中档题.二、填空题:本大题共6小题,每小题5分,共30分。11、③④【解析】
①令,得出,再利用双勾函数的单调性判断该命题的正误;②将函数解析式变形为,利用基本不等式判断该命题的正误;③由得出,得出,利用基本不等式可判断该命题的正误;④将代数式与代数式相乘,展开后利用基本不等式可求出的最小值,进而判断出该命题的正误。【详解】①由得,则,则,设,则,则,则上减函数,则上为增函数,则时,取得最小值,当时,,故的最大值为,错误;②若,则函数,则,即函数的最大值为,无最小值,故错误;③若,满足,则,则,由,得,则,当且仅当,即得,即时取等号,即的最小值为,故③正确;④,当且仅当,即,即时,取等号,即函数的最小值为,故④正确,故答案为:③④。【点睛】本题考查利用基本不等式来判断命题的正误,利用基本不等式需注意满足“一正、二定、三相等”这三个条件,同时注意结合双勾函数单调性来考查,属于中等题。12、2【解析】
直接根据弧长公式,可得.【详解】因为,所以,解得【点睛】本题主要考查弧长公式的应用.13、【解析】试题分析:∵向量,是两个不共线的向量,不妨以,为基底,则,又∵共线,.考点:平面向量与关系向量14、【解析】
根据,可得平面,进而可得,再由,证明平面,即可得出,是的直角顶点.【详解】在三棱锥中,,,且,∴平面,又平面,∴,又∵,且,∴平面,又平面,∴,∴的直角顶点为.故答案为:.【点睛】本题考查了直线与直线以及直线与平面垂直的应用问题,属于基础题.15、【解析】
将直线,平移到交于点,设平移后的直线为,,如图,过作及其外角的角平分线,根据题意可以求出的取值范围.【详解】将直线,平移到交于点,设平移后的直线为,,如图,过作及其外角的角平分线,异面直线,所成角为,可知,所以,所以在方向,要使有两条,则有:,在方向,要使不存在,则有,综上所述,.故答案为:【点睛】本题考查了异面直线的所成角的有关性质,考查了空间想象能力.16、5【解析】
由题得表示点到点的距离,再利用点到直线的距离求解.【详解】由题得表示点到点的距离.又∵点在直线上,∴的最小值等于点到直线的距离,且.【点睛】本题主要考查点到两点间的距离和点到直线的距离的计算,意在考查学生对这些知识的理解掌握水平,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1){x|x≤-1或x=1};(2);(3).【解析】试题分析:(1)把代入函数解析式,分段后分段求解方程的解集,取并集后得答案;(2)分段写出函数的解析式,由在上单调递增,则需第一段二次函数的对称轴小于等于,第二段一次函数的一次项系数大于0,且第二段函数的最大值小于等于第一段函数的最小值,联立不等式组后求解的取值范围;(3)把不等式对一切实数恒成立转化为函数对一切实数恒成立,然后对进行分类讨论,利用函数单调性求得的范围,取并集后得答案.试题解析:(1)当时,,则;当时,由,得,解得或;当时,恒成立,∴方程的解集为或.(2)由题意知,若在R上单调递增,则解得,∴实数的取值范围为.(3)设,则,不等式对任意恒成立,等价于不等式对任意恒成立.①若,则,即,取,此时,∴,即对任意的,总能找到,使得,∴不存在,使得恒成立.②若,则,∴的值域为,∴恒成立③若,当时,单调递减,其值域为,由于,所以恒成立,当时,由,知,在处取得最小值,令,得,又,∴,综上,.18、(Ⅰ)(Ⅱ)【解析】
(Ⅰ)利用平面向量的数量积的运算法则化简,进而求出向量与的夹角;(Ⅱ)利用,对其化简,代入数值,即可求出结果.【详解】解:(Ⅰ)由得因向量与的夹角为(Ⅱ)【点睛】本题考查平面向量的数量积的应用,以及平面向量的夹角以及平面向量的模的求法,考查计算能力.19、(1),(2),最小值为−1.【解析】
(Ⅰ)根据等差数列的求和公式,求得公差d,即可表示出的通项公式;(Ⅱ)根据等差数列的求和公式得Sn=n2-8n,根据二次函数的性质,可得Sn的最小值.【详解】(I)设的公差为d,由题意得.由得d=2.所以的通项公式为.(II)由(I)得.所以当n=4时,取得最小值,最小值为−1.【点睛】本题考查了等差数列的通项公式,考查了等差数列的前n项的和公式,考查了等差数列前n项和的最值问题;求等差数列前n项和的最值有两种方法:①函数法,②邻项变号法.20、(1),最大值为.(2)时,最小值0.时,最大值.【解析】
(1)利用数量积公式、倍角公式和辅助角公式,化简,再利用三角函数的有界性,即可得答案;(2)利用整体法求出,再利用三角函数线,即可得答案.【详解】(1)∴,的最大值为
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 碧桂园新客户开发课件
- 督促早读的课件
- 2026年电子商务专业网络营销与电商运营实践题库
- 2026年心理咨询服务师考试题库心理咨询理论与实操技巧题
- 2026年音乐理论考试基础乐理知识试题
- 2026年绿色环保理念绿色环保技术与产品应用模拟试题
- 2026年电子商务运营试题集涵盖网络推广数据分析等内容
- 2026年软件测试工程师技术面试宝典核心考点解析
- 2026年历史文化常识与名人轶事专项试题
- 2026年传统工艺技术继承与创新发展测试题
- 2025年公共管理改革的热点问题试题及答案
- 人工影响天气培训
- 2025年中考数学模拟考试卷(附答案)
- 铁矿球团工程设计规范
- 2025年官方标准工程款房屋抵偿协议范本
- 专题14-斜面滑块木板模型-高考物理动量常用模型(原卷版)
- 高处作业安全培训课件
- 山西省2024年中考道德与法治真题试卷(含答案)
- 驾校安全生产风险及管控措施清单
- 安保合同内减一人补充协议
- 产品保修证明模板
评论
0/150
提交评论