2026届湖南省安乡县一中高一数学第二学期期末经典试题含解析_第1页
2026届湖南省安乡县一中高一数学第二学期期末经典试题含解析_第2页
2026届湖南省安乡县一中高一数学第二学期期末经典试题含解析_第3页
2026届湖南省安乡县一中高一数学第二学期期末经典试题含解析_第4页
2026届湖南省安乡县一中高一数学第二学期期末经典试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届湖南省安乡县一中高一数学第二学期期末经典试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.向量,,若,则()A.5 B. C. D.2.在长方体中,,,则异面直线与所成角的余弦值为()A. B.C. D.3.已知正四棱锥的顶点均在球上,且该正四棱锥的各个棱长均为,则球的表面积为()A. B. C. D.4.如果直线m//直线n,且m//平面α,那么n与αA.相交 B.n//α C.n⊂α5.圆C:x2+yA.2 B.3 C.1 D.26.《莱因德纸草书》是世界上最古老的数学著作之一,书中有一道这样的题目:把100个面包分给五个人,使每个人所得成等差数列,最大的三份之和的是最小的两份之和,则最小的一份的量是()A. B. C. D.7.已知的三个内角之比为,那么对应的三边之比等于()A. B. C. D.8.函数的图象的相邻两支截直线所得的线段长为,则的值是()A.0 B. C.1 D.9.设是平面内的一组基底,则下面四组向量中,能作为基底的是()A.与 B.与C.与 D.与10.“”是“、、”成等比数列的()条件A.充分非必要 B.必要非充分 C.充要 D.既非充分又非必要二、填空题:本大题共6小题,每小题5分,共30分。11.已知,则的值为________.12.已知等差数列,的前项和分别为,,若,则______.13.若数列满足,且,则___________.14.已知指数函数上的最大值与最小值之和为10,则=____________。15.在中,角A,B,C所对的边分别为a,b,c,,的平分线交AC于点D,且,则的最小值为________.16.有一个倒圆锥形容器,它的轴截面是一个正三角形,在容器内放一个半径为的铁球,并注入水,使水面与球正好相切,然后将球取出,则这时容器中水的深度为___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,在三棱柱ABC-A1B1C1中,BB1⊥平面ABC,∠BAC=90°,AC=AB=AA1,E是BC的中点.(1)求证:AE⊥B1C;(2)求异面直线AE与A1C所成的角的大小;(3)若G为C1C中点,求二面角C-AG-E的正切值.18.在中,角的对边分别为,已知.(1)求角;(2)若的面积为,求在上的投影.19.已知.(1)求不等式的解集;(2)若关于的不等式能成立,求实数的取值范围.20.某地区有小学21所,中学14所,现采用分层抽样的方法从这些学校中抽取5所学校,对学生进行视力检查.(1)求应从小学、中学中分别抽取的学校数目;(2)若从抽取的5所学校中抽取2所学校作进一步数据分析:①列出所有可能抽取的结果;②求抽取的2所学校至少有一所中学的概率.21.在中,内角,,的对边分别为,已知.(1)求角的大小;(2)若,且,求的面积.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】

由已知等式求出,再根据模的坐标运算计算出模.【详解】由得,解得.∴,,.故选:A.【点睛】本题考查求向量的模,考查向量的数量积,及模的坐标运算.掌握数量积和模的坐标表示是解题基础.2、C【解析】

画出长方体,将平移至,则,则即为异面直线与所成角,由余弦定理即可求解.【详解】根据题意,画出长方体如下图所示:将平移至,则即为异面直线与所成角,,由余弦定理可得故选:C【点睛】本题考查了长方体中异面直线的夹角求法,余弦定理在解三角形中的应用,属于基础题.3、C【解析】设点在底面的投影点为,则,,平面,故,而底面所在截面圆的半径,故该截面圆即为过球心的圆,则球的半径,故球的表面积,故选C.点睛:本题考查球的内接体的判断与应用,球的表面积的求法,考查计算能力;研究球与多面体的接、切问题主要考虑以下几个方面的问题:(1)球心与多面体中心的位置关系;(2)球的半径与多面体的棱长的关系;(3)球自身的对称性与多面体的对称性;(4)能否做出轴截面.4、D【解析】

利用直线与平面平行的判定定理和直线与平面平行的性质进行判断即可.【详解】∵直线m/直线n,且m/平面∴当n不在平面α内时,平面α内存在直线m'//m⇒n//m',符合线面平行的判定定理可得n/平面α当n在平面α内时,也符合条件,n与α的位置关系是n//α或【点睛】本题主要考查线面平行的判定定理以及线面平行的性质,意在考查对基本定理掌握的熟练程度,属于基础题.5、D【解析】

由点到直线距离公式,求出圆心到直线y=x的距离d,再由弦长=2r【详解】因为圆C:x2+y2-2x=0所以圆心(1,0)到直线y=x的距离为d=1-0因此,弦长=2r故选D【点睛】本题主要考查求圆被直线所截弦长问题,常用几何法处理,属于常考题型.6、D【解析】

由题意可得中间部分的为20个面包,设最小的一份为,公差为,可得到和的方程,即可求解.【详解】由题意可得中间的那份为20个面包,设最小的一份为,公差为,由题意可得,解得,故选D.【点睛】本题主要考查了等差数列的通项公式及其应用,其中根据题意设最小的一份为,公差为,列出关于和的方程是解答的关键,着重考查了推理与运算能力,属于基础题.7、D【解析】∵已知△ABC的三个内角之比为,∴有,再由,可得,故三内角分别为.再由正弦定理可得三边之比,故答案为点睛:本题考查正弦定理的应用,结合三角形内角和等于,很容易得出三个角的大小,利用正弦定理即出结果8、C【解析】

根据题意可知函数周期为,利用周期公式求出,计算即可求值.【详解】由正切型函数的图象及相邻两支截直线所得的线段长为知,,所以,,故选C.【点睛】本题主要考查了正切型函数的周期,求值,属于中档题.9、C【解析】

利用向量可以作为基底的条件是,两个向量不共线,由此分别判定选项中的两个向量是否共线即可.【详解】由是平面内的一组基底,所以和不共线,对应选项A:,所以这2个向量共线,不能作为基底;对应选项B:,所以这2个向量共线,不能作为基底;对应选项D:,所以这2个向量共线,不能作为基底;对应选项C:与不共线,能作为基底.故选:C.【点睛】本题主要考查基底的定义,判断2个向量是否共线的方法,属于基础题.10、B【解析】

利用充分必要条件直接推理即可【详解】若“、、”成等比数列,则;成立反之,若“”,如果a=b=G=0则、、”不成等比数列,故选B.【点睛】本题考查充分必要条件的判定,熟记等比数列的性质是关键,是基础题二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

由题意利用诱导公式求得的值,可得要求式子的值.【详解】,则,故答案为:.【点睛】本题主要考查诱导公式的应用,属于基础题.12、【解析】

利用等差数列的性质以及等差数列奇数项之和与中间项的关系进行化简求解.【详解】因为是等差数列,所以,又因为为等差数列,所以,故.【点睛】(1)在等差数列中,若,则有;(2)在等差数列.13、【解析】

对已知等式左右取倒数可整理得到,进而得到为等差数列;利用等差数列通项公式可求得,进而得到的通项公式,从而求得结果.【详解】,即数列是以为首项,为公差的等差数列故答案为:【点睛】本题考查利用递推公式求解数列通项公式的问题,关键是明确对于形式的递推关系式,采用倒数法来进行推导.14、【解析】

根据和时的单调性可确定最大值和最小值,进而构造方程求得结果.【详解】当时,在上单调递增,,解得:或(舍)当时,在上单调递减,,解得:(舍)或(舍)综上所述:故答案为:【点睛】本题考查利用函数最值求解参数值的问题,关键是能够根据指数函数得单调性确定最值点.15、32【解析】

根据面积关系建立方程关系,结合基本不等式1的代换进行求解即可.【详解】如图所示,则△ABC的面积为,即ac=2a+2c,得,得,当且仅当,即3c=a时取等号;∴的最小值为32.故答案为:32.【点睛】本题考查三角形中的几何计算,属于中等题.16、15【解析】

根据球的半径,先求得球的体积;根据圆与等边三角形关系,设出的边长为,由面积关系表示出圆锥的体积;设拿出铁球后水面高度为,用表示出水的体积,由即可求得液面高度.【详解】因为铁球半径为,所以由球的体积公式可得,设的边长为,则由面积公式与内切圆关系可得,解得,则圆锥的高为.则圆锥的体积为,设拿出铁球后的水面为,且到的距离为,如下图所示:则由,可得,所以拿出铁球后水的体积为,由,可知,解得,即将铁球取出后容器中水的深度为15.故答案为:15.【点睛】本题考查了圆锥内切球性质的应用,球的体积公式及圆锥体积公式的求法,属于中档题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2);(3)【解析】

(1)由BB1⊥面ABC及线面垂直的性质可得AE⊥BB1,由AC=AB,E是BC的中点,及等腰三角形三线合一,可得AE⊥BC,结合线面垂直的判定定理可证得AE⊥面BB1C1C,进而由线面垂直的性质得到AE⊥B1C;(2)取B1C1的中点E1,连A1E1,E1C,根据异面直线夹角定义可得,∠E1A1C是异面直线A与A1C所成的角,设AC=AB=AA1=2,解三角形E1A1C可得答案.(3)连接AG,设P是AC的中点,过点P作PQ⊥AG于Q,连EP,EQ,则EP⊥AC,由直三棱锥的侧面与底面垂直,结合面面垂直的性质定理,可得EP⊥平面ACC1A1,进而由二面角的定义可得∠PQE是二面角C-AG-E的平面角.【详解】证明:(1)因为BB1⊥面ABC,AE⊂面ABC,所以AE⊥BB1由AB=AC,E为BC的中点得到AE⊥BC∵BC∩BB1=B∴AE⊥面BB1C1C∴AE⊥B1C解:(2)取B1C1的中点E1,连A1E1,E1C,则AE∥A1E1,∴∠E1A1C是异面直线AE与A1C所成的角.设AC=AB=AA1=2,则由∠BAC=90°,可得A1E1=AE=,A1C=2,E1C1=EC=BC=∴E1C==∵在△E1A1C中,cos∠E1A1C==所以异面直线AE与A1C所成的角为.(3)连接AG,设P是AC的中点,过点P作PQ⊥AG于Q,连EP,EQ,则EP⊥AC又∵平面ABC⊥平面ACC1A1∴EP⊥平面ACC1A1而PQ⊥AG∴EQ⊥AG.∴∠PQE是二面角C-AG-E的平面角.由EP=1,AP=1,PQ=,得tan∠PQE==所以二面角C-AG-E的平面角正切值是【点睛】本题是与二面角有关的立体几何综合题,主要考查了异面直线的夹角,线线垂直的判定,二面角等知识点,难度中档,熟练掌握线面垂直,线线垂直与面面垂直之间的转化及异面直线夹角及二面角的定义,是解答本题的关键.18、(1);(2)当时,在上的投影为;当时,在上的投影为.【解析】

(1)由已知条件,结合正弦定理,求得,即可求得C的大小;(2)由已知条件,结合三角形的面积公式及余弦定理,求得的值,再由向量的数量积的运算,即可求解.【详解】(1)因为,由正弦定理知,即,又,所以,所以,在中,,所以,又,所以;(2)在中,由余弦定理得,由,即,因此,所以,解得或,当时,在上的投影为;当时,在上的投影为.【点睛】本题主要考查了正弦定理、余弦定理和三角形的面积公式的应用,其中在解有关三角形的题目时,要抓住题设条件和利用某个定理的信息,合理应用正弦定理和余弦定理求解是解答的关键,着重考查了运算与求解能力,属于基础题.19、(1)(1)或.【解析】

(1)运用绝对值的意义,去绝对值,解不等式,求并集即可;(1)求得|t﹣1|+|1t+3|的最小值,原不等式等价为|x+l|﹣|x﹣m|的最大值,由绝对值不等式的性质,以及绝对值不等式的解法,可得所求范围.【详解】解:(1)由题意可得|x﹣1|+|1x+3|>4,当x≥1时,x﹣1+1x+3>4,解得x≥1;当x<1时,1﹣x+1x+3>4,解得0<x<1;当x时,1﹣x﹣1x﹣3>4,解得x<﹣1.可得原不等式的解集为(﹣∞,﹣1)∪(0,+∞);(1)由(1)可得|t﹣1|+|1t+3|,可得t时,|t﹣1|+|1t+3|取得最小值,关于x的不等式|x+l|﹣|x﹣m|≥|t﹣1|+|1t+3|(t∈R)能成立,等价为|x+l|﹣|x﹣m|的最大值,由|x+l|﹣|x﹣m|≤|m+1|,可得|m+1|,解得m或m.【点睛】本题考查绝对值不等式的解法和绝对值不等式的性质的运用,求最值,考查化简变形能力,以及运算能力,属于基础题.20、(1)3所、2所;(2)①共10种;②【解析】

(1)根据分层抽样的方法,得到分层抽样的比例,即可求解样本中小学与中学抽取的学校数目;(2)①3所小学分别记为;2所中学分别记为,利用列举法,即可求得抽取的2所学校的所有结果;②利用古典概型的概率计算公式,即可求得相应的概率.【详解】(1)学校总数为35所,所以分层抽样的比例为,计算各类学校应抽取的数目为:,故从小学、中学中分别抽取的学校数目为3所、2所.(2)①3所小学分别记为;2所中学分

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论