版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届浙江省衢州市五校联盟数学高一下期末考试模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.将边长为2的正方形沿对角线折起,则三棱锥的外接球表面积为()A. B. C. D.2.已知实数满足,则的最大值为()A.8 B.2 C.4 D.63.已知圆锥的底面半径为,母线与底面所成的角为,则此圆锥的侧面积为()A. B. C. D.4.若某市所中学参加中学生合唱比赛的得分用茎叶图表示(如图),其中茎为十位数,叶为个位数,则这组数据的中位数是()A.91 B.91.5C.92 D.92.55.数列的通项,其前项和为,则为()A. B. C. D.6.已知数列满足,,则数列的前5项和()A.15 B.28 C.45 D.667.函数()的部分图象如图所示,其中是图象的最高点,是图象与轴的交点,则()A. B. C. D.8.若函数只有一个零点,则实数的取值范围是A.或 B.C.或 D.9.已知点是所在平面内的一定点,是平面内一动点,若,则点的轨迹一定经过的()A.重心 B.垂心 C.内心 D.外心10.如图所示是正方体的平面展开图,在这个正方体中CN与BM所成角为()A.30° B.45° C.60° D.90°二、填空题:本大题共6小题,每小题5分,共30分。11.设向量与向量共线,则实数等于__________.12.一组数据2,4,5,,7,9的众数是7,则这组数据的中位数是__________.13.若向量与的夹角为,与的夹角为,则______.14.数列的前项和为,若对任意,都有,则数列的前项和为________15.已知正方体中,,分别为,的中点,那么异面直线与所成角的余弦值为______.16.已知等比数列的公比为,关于的不等式有下列说法:①当吋,不等式的解集②当吋,不等式的解集为③当>0吋,存在公比,使得不等式解集为④存在公比,使得不等式解集为R.上述说法正确的序号是_______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知,且.(1)求的值;(2)求的值.18.的内角,,的对边分别为,,,为边上一点,为的角平分线,,.(1)求的值:(2)求面积的最大值.19.设函数f(x)=2cos2x﹣cos(2x﹣).(1)求f(x)的周期和最大值;(2)已知△ABC中,角A.B.C的对边分别为A,B,C,若f(π﹣A)=,b+c=2,求a的最小值.20.已知函数f(x)=(1+)sin2x-2sin(x+)sin(x-).(1)若tanα=2,求f(α);(2)若x∈[,],求f(x)的取值范围21.某市食品药品监督管理局开展2019年春季校园餐饮安全检查,对本市的8所中学食堂进行了原料采购加工标准和卫生标准的检查和评分,其评分情况如下表所示:中学编号12345678原料采购加工标准评分x10095938382757066卫生标准评分y8784838281797775(1)已知x与y之间具有线性相关关系,求y关于x的线性回归方程;(精确到0.1)(2)现从8个被检查的中学食堂中任意抽取两个组成一组,若两个中学食堂的原料采购加工标准和卫生标准的评分均超过80分,则组成“对比标兵食堂”,求该组被评为“对比标兵食堂”的概率.参考公式:,;参考数据:,.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】
根据题意,画出图形,结合图形得出三棱锥的外接球直径,从而求出外接球的表面积,得到答案.【详解】由题意,将边长为2的正方形沿对角线折起,得到三棱锥,如图所示,则,三棱锥的外接球直径为,即半径为,外接球的表面积为,故选C.【点睛】本题主要考查了平面图形的折叠问题,以及外接球的表面积的计算,着重考查了空间想象能力,以及推理与计算能力,属于基础题.2、D【解析】
设点,根据条件知点均在单位圆上,由向量数量积或斜率知识,可发现,对目标式子进行变形,发现其几何意义为两点到直线的距离之和有关.【详解】设,,均在圆上,且,设的中点为,则点到原点的距离为,点在圆上,设到直线的距离分别为,,,.【点睛】利用数形结合思想,发现代数式的几何意义,即构造系数,才能看出目标式子的几何意义为两点到直线距离之和的倍.3、B【解析】
首先计算出母线长,再利用圆锥的侧面积(其中为底面圆的半径,为母线长),即可得到答案.【详解】由于圆锥的底面半径,母线与底面所成的角为,所以母线长,故圆锥的侧面积;故答案选B【点睛】本题考查圆锥母线和侧面积的计算,解题关键是熟练掌握圆锥的侧面积的计算公式,即(其中为底面圆的半径,为母线长),属于基础题4、B【解析】试题分析:中位数为中间的一个数或两个数的平均数,所以中位数为考点:茎叶图5、A【解析】分析:利用二倍角的余弦公式化简得,根据周期公式求出周期为,从而可得结果.详解:首先对进行化简得,又由关于的取值表:123456可得的周期为,则可得,设,则,故选A.点睛:本题考查二倍角的余弦公式、三角函数的周期性以及等差数列的求和公式,意在考查灵活运用所学知识解决问题的能力以及计算能力,求求解过程要细心,注意避免计算错误.6、C【解析】
根据可知数列为等差数列,再根据等差数列的求和性质求解即可.【详解】因为,故数列是以4为公差,首项的等差数列.故.故选:C【点睛】本题主要考查了等差数列的判定与等差数列求和的性质与计算,属于基础题.7、D【解析】函数的周期为,四分之一周期为,而函数的最大值为,故,由余弦定理得,故.8、A【解析】
根据题意,原题等价于,再讨论即可得到结论.【详解】由题,故函数有一个零点等价于即当时,,,符合题意;当,时,令,满足解得,综上的取值范围是或故选:A.【点睛】本题考查函数的零点,对数函数的性质,二次函数根的分布问题,考查了分类讨论思想,属于中档题.9、A【解析】
设D是BC的中点,由,,知,所以点P的轨迹是射线AD,故点P的轨迹一定经过△ABC的重心.【详解】如图,设D是BC的中点,∵,,∴,即∴点P的轨迹是射线AD,∵AD是△ABC中BC边上的中线,∴点P的轨迹一定经过△ABC的重心.故选:A.【点睛】本题考查三角形五心的应用,是基础题.解题时要认真审题,仔细解答.10、C【解析】
把展开图再还原成正方体如图所示:由于BE和CN平行且相等,故∠EBM(或其补角)为所求.再由△BEM是等边三角形,可得∠EBM=60°,从而得出结论.【详解】把展开图再还原成正方体如图所示:由于BE和CN平行且相等,故异面直线CN与BM所成的角就是BE和BM所成的角,故∠EBM(或其补角)为所求,再由BEM是等边三角形,可得∠EBM=60,故选:C【点睛】本题主要考查了求异面直线所成的角,体现了转化的数学思想,属于中档题.二、填空题:本大题共6小题,每小题5分,共30分。11、3【解析】
利用向量共线的坐标公式,列式求解.【详解】因为向量与向量共线,所以,故答案为:3.【点睛】本题考查向量共线的坐标公式,属于基础题.12、6【解析】
由题得x=7,再利用中位数的公式求这组数据的中位数.【详解】因为数据2,4,5,,7,9的众数是7,所以,则这组数据的中位数是.故答案为6【点睛】本题主要考查众数的概念和中位数的计算,意在考查学生对这些知识的理解掌握水平,属于基础题.13、【解析】
根据向量平行四边形法则作出图形,然后在三角形中利用正弦定理分析.【详解】如图所示,,,所以在中有:,则,故.【点睛】本题考查向量的平行四边形法则的运用,难度一般.在运用平行四边形法则时候,可以适当将其拆分为三角形,利用解三角形中的一些方法去解决问题.14、【解析】
根据数列的递推公式,求得,再结合等差等比数列的前项和公式,即可求解,得到答案.【详解】由题意,数列满足,…①,…②由①-②,可得,即当时,,所以,则数列的前项和为.【点睛】本题主要考查了数列的递推关系式的应用,以及等差、等比数列的前项和的应用,其中解答中熟练应用熟练的递推公式得到数列的通项公式,再结合等差、等比数列的前项和公式的准确计算是解答的关键,着重考查了推理与运算能力,属于中档试题.15、【解析】
异面直线所成角,一般平移到同一个平面求解.【详解】连接DF,异面直线与所成角等于【点睛】异面直线所成角,一般平移到同一个平面求解.不能平移时通常考虑建系,利用向量解决问题.16、③【解析】
利用等比数列的通项公式,解不等式后可得结论.【详解】由题意,不等式变为,即,若,则,当或时解为,当或时,解为,时,解为;若,则,当或时解为,当或时,解为,时,不等式无解.对照A、B、C、D,只有C正确.故选C.【点睛】本题考查等比数列的通项公式,考查解一元二次不等式,难点是解一元二次不等式,注意分类讨论,本题中需对二次项系数分正负,然后以要对两根分大小,另外还有一个是相应的一元二次方程是否有实数解分类(本题已经有两解,不需要这个分类).三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】
(1)由即可求得;(2)可由的差角公式进行求解【详解】(1)由题可知,,,(2),又由前式可判断,,,故,【点睛】本题考查三角函数的计算,二倍角公式的使用,两角差公式的使用,易错点为忽略具体的角度范围,属于中档题18、(1)(2)3【解析】
(1)由,,根据三角形面积公式可知,,再根据角平分线的定义可知,到,的距离相等,所以,即可求出;(2)先根据(1)可得,,由平方关系得,再根据三角形的面积公式,可化简得,然后根据基本不等式即可求出面积的最大值.【详解】(1)如图所示:因为,所以.又因为为的角平分线,所以到,的距离相等,所以所以.(2)由(1)及余弦定理得:所以,又因为所以,所以又因为且,故所以,当且仅当即时取等号.所以面积的最大值为.【点睛】本题主要考查正余弦定理在解三角形中的应用,三角形面积公式的应用,以及利用基本不等式求最值,意在考查学生的转化能力和数学运算能力,属于中档题.19、(1)周期为π,最大值为2.(2)【解析】
(1)利用倍角公式降幂,展开两角差的余弦,将函数的关系式化简余弦型函数,可求出函数的周期及最值;(2)由f(π﹣A),求解角A,再利用余弦定理和基本不等式求a的最小值.【详解】(1)函数f(x)=2cos2x﹣cos(2x)=1+cos2x=cos(2x)+1,∵﹣1≤cos(2x)≤1,∴T,f(x)的最大值为2;(2)由题意,f(π﹣A)=f(﹣A)=cos(﹣2A)+1,即:cos(﹣2A),又∵0<A<π,∴2A,∴﹣2A,即A.在△ABC中,b+c=2,cosA,由余弦定理,a2=b2+c2﹣2bccosA=(b+c)2﹣bc,由于:bc,当b=c=1时,等号成立.∴a2≥4﹣1=3,即a.则a的最小值为.【点睛】本题考查三角函数的恒等变换,余弦形函数的性质的应用,余弦定理和基本不等式的应用,是中档题.20、(1);(2)[0,].【解析】
(1)f(x)=·sin2x-2(sinx+cosx)(sinx-cosx)=sin2x+cosxsinx-sin2x+cos2x=sinxcosx+cos2x,∴f(α)====.(2)由(1)知,f(x)=cos2x+sinxcosx=+=sin(2x+)+,∵≤x≤,≤2x+≤,-≤sin(2x+)≤1,0≤f(x)≤,∴f(x)∈[0,].本试题组要是
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年文学鉴赏与文学理论应用题库
- 2026年自然地理知识地球科学及环境保护知识题集
- 2026年汽车维修技术汽车故障诊断与维修操作题库
- 2026年环境科学与保护策略实践考试题库
- 2026年环境工程师水污染治理与环境保护技术理论考试题
- 2026年交通运输管理与调度策略考试题
- 2026年旅游专业综合实践能力提升题集
- 2026年健身教练资格考试题库与模拟训练手册
- 2026年电子设备检测授权签字人专业技能测试题
- 2026年建筑规范标准与技术实务问答集
- 西安民宿管理办法
- 【基于PLC的地铁屏蔽门控制系统设计8900字(论文)】
- 企业人力资源管理制度
- 医学诊断证明书规范与管理体系
- 《肝性脑病》课件
- 经内镜逆行胰胆管造影(ERCP)护理业务学习
- 养老院老人档案管理制度
- 《摩擦磨损试验》课件
- 粮油食材配送投标方案(大米食用油食材配送服务投标方案)(技术方案)
- 超声波治疗仪的生物力学效应研究
- 耳膜穿孔伤残鉴定
评论
0/150
提交评论