2026届上海市同洲模范学校数学高一下期末联考试题含解析_第1页
2026届上海市同洲模范学校数学高一下期末联考试题含解析_第2页
2026届上海市同洲模范学校数学高一下期末联考试题含解析_第3页
2026届上海市同洲模范学校数学高一下期末联考试题含解析_第4页
2026届上海市同洲模范学校数学高一下期末联考试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2026届上海市同洲模范学校数学高一下期末联考试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知是定义在上的奇函数,且当时,,那么()A. B. C. D.2.已知,,为坐标原点,则的外接圆方程是()A. B.C. D.3.已知直线m,n,平面α,β,给出下列命题:①若m⊥α,n⊥β,且m⊥n,则α⊥β②若m∥α,n∥β,且m∥n,则α∥β③若m∥α,n∥β,且α∥β,且m∥n④若m⊥α,n⊥β,且α⊥β,则m⊥n其中正确的命题是()A.②③ B.①③ C.①④ D.③④4.已知为等差数列,为其前项和.若,则()A. B. C. D.5.已知函数,函数的最小值等于()A. B. C.5 D.96.在△ABC中,已知,P为线段AB上的点,且的最大值为()A.3B.4C.5D.67.将的图象向左平移个单位长度,再向下平移个单位长度得到的图象,若,则()A. B. C. D.8.在棱长为2的正方体中,是内(不含边界)的一个动点,若,则线段的长的取值范围为()A. B. C. D.9.若直线与平面相交,则()A.平面内存在无数条直线与直线异面B.平面内存在唯一的一条直线与直线平行C.平面内存在唯一的一条直线与直线垂直D.平面内的直线与直线都相交10.已知圆柱的上、下底面的中心分别为,,过直线的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.某中学高一年级有学生1200人,高二年级有学生900人,高三年级有学生1500人,现按年级用分层抽样的方法从这三个年级的学生中抽取一个容量为720的样本进行某项研究,则应从高三年级学生中抽取_____人.12.若,,,则M与N的大小关系为___________.13.一个圆柱和一个圆锥的底面直径和它们的高都与某一个球的直径相等,这时圆柱、圆锥、球的体积之比为.14.函数的值域是________15.已知,且,.则的值是________.16.已知数列中,且当时,则数列的前项和=__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.“中国人均读书本(包括网络文学和教科书),比韩国的本、法国的本、日本的本、犹太人的本少得多,是世界上人均读书最少的国家”,这个论断被各种媒体反复引用.出现这样统计结果无疑是令人尴尬的,而且和其他国家相比,我国国民的阅读量如此之低,也和我国是传统的文明古国、礼仪之邦的地位不相符.某小区为了提高小区内人员的读书兴趣,特举办读书活动,准备进一定量的书籍丰富小区图书站,由于不同年龄段需看不同类型的书籍,为了合理配备资源,现对小区内看书人员进行年龄调查,随机抽取了一天名读书者进行调查,将他们的年龄分成段:,,,,,后得到如图所示的频率分布直方图.问:(1)估计在这名读书者中年龄分布在的人数;(2)求这名读书者年龄的平均数和中位数;(3)若从年龄在的读书者中任取名,求这两名读书者年龄在的人数恰为的概率.18.某产品具有一定的时效性,在这个时效期内,由市场调查可知,在不做广告宣传且每件获利a元的前提下,可卖出b件;若做广告宣传,广告费为n千元比广告费为千元时多卖出件。(1)试写出销售量与n的函数关系式;(2)当时,厂家应该生产多少件产品,做几千元的广告,才能获利最大?19.如图所示,是正三角形,线段和都垂直于平面,设,,且为的中点.(1)求证:平面;(2)求平面与平面所成的较小二面角的大小20.如图,在四棱锥P﹣ABCD中,底面ABCD为平行四边形,且∠BAP=∠CDP=90°(1)证明:平面PAB⊥平面PAD;(2)若PA=PD=AB=AD,且四棱锥的侧面积为6+2,求四校锥P﹣ABCD的体积.21.已知直线l1:ax﹣y﹣2=0与直线l2:(3﹣2a)x+y﹣1=0(a∈R).(1)若l1与l2互相垂直,求a的值:(2)若l1与l2相交且交点在第三象限,求a的取值范围.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】试题分析:由题意得,,故,故选C.考点:分段函数的应用.2、A【解析】

根据圆的几何性质判断出是直径,由此求得圆心坐标和半径,进而求得三角形外接圆的方程.【详解】由于直角对的弦是直径,故是圆的直径,所以圆心坐标为,半径为,所以圆的标准方程为,化简得,故选A.【点睛】本小题主要考查三角形外接圆的方程的求法,考查圆的几何性质,属于基础题.3、C【解析】

根据线线、线面和面面有关定理,对选项逐一分析,由此得出正确选项.【详解】对于①,两个平面的垂线垂直,那么这两个平面垂直.所以①正确.对于②,与可能相交,此时并且与两个平面的交线平行.所以②错误.对于③,直线可能为异面直线,所以③错误.对于④,两个平面垂直,那么这两个平面的垂线垂直.所以④正确.综上所述,正确命题的序号为①④.故选:C【点睛】本小题主要考查空间线线、线面和面面有关命题真假性的判断,属于基础题.4、D【解析】试题分析:设等差数列的公差为,由题意得,解得,所以,故答案为D.考点:1、数列的通项公式;2、数列的前项和.5、C【解析】

先将化为,由基本不等式即可求出最小值.【详解】因为,当且仅当,即时,取等号.故选C【点睛】本题主要考查利用基本不等式求函数的最值问题,需要先将函数化为能用基本不等式的形式,即可利用基本不等式求解,属于基础题型.6、A【解析】试题分析:在中,设,∵,,即,∴,∵,∴,即.∵,,∴,,∴.根据直角三角形可得,,,∴,以所在的直线为轴,以所在的直线为轴建立直角坐标系可得,为线段上的一点,则存在实数使得.设,,则,且,∴,可得则,即,解得,故所求的最大值为:,故选A.考点:三角形的内角和定理,两角和的正弦公式,基本不等式求解最值.7、D【解析】因为,所以,因此,选D.点睛:三角函数的图象变换,提倡“先平移,后伸缩”,但“先伸缩,后平移”也常出现在题目中,所以也必须熟练掌握.无论是哪种变形,切记每一个变换总是对字母而言.8、C【解析】

先判断是正四面体,可得正四面体的棱长为,则的最大值为的长,的最小值是到平面的距离,结合不在三角形的边上,计算可得结果.【详解】由正方体的性质可知,是正四面体,且正四面体的棱长为,在内,的最大值为,的最小值是到平面的距离,设在平面的射影为,则为正三角形的中心,,,的最小值为,又因为不在三角形的边上,所以的范围是,故选C.【点睛】本题主要考查正方体的性质及立体几何求最值,属于难题.解决圆锥曲线中的最值问题一般有两种方法:一是几何意义以及平面几何的有关结论来解决,非常巧妙;二是将立体几何中最值问题转化为函数问题,然后根据函数的特征选用参数法、配方法、判别式法、三角函数有界法、函数单调性法以及均值不等式法求解.9、A【解析】

根据空间中直线与平面的位置关系,逐项进行判定,即可求解.【详解】由题意,直线与平面相交,对于A中,平面内与无交点的直线都与直线异面,所以有无数条,正确;对于B中,平面内的直线与要么相交,要么异面,不可能平行,所以,错误;对于C中,平面内有无数条平行直线与直线垂直,所以,错误;对于D中,由A知,D错误.故选A.【点睛】本题主要考查了直线与平面的位置关系的应用,其中解答中熟记直线与平面的位置关系,合理判定是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.10、B【解析】分析:首先根据正方形的面积求得正方形的边长,从而进一步确定圆柱的底面圆半径与圆柱的高,从而利用相关公式求得圆柱的表面积.详解:根据题意,可得截面是边长为的正方形,结合圆柱的特征,可知该圆柱的底面为半径是的圆,且高为,所以其表面积为,故选B.点睛:该题考查的是有关圆柱的表面积的求解问题,在解题的过程中,需要利用题的条件确定圆柱的相关量,即圆柱的底面圆的半径以及圆柱的高,在求圆柱的表面积的时候,一定要注意是两个底面圆与侧面积的和.二、填空题:本大题共6小题,每小题5分,共30分。11、1.【解析】

先求得高三学生占的比例,再利用分层抽样的定义和方法,即可求解.【详解】由题意,高三学生占的比例为,所以应从高三年级学生中抽取的人数为.【点睛】本题主要考查了分层抽样的定义和方法,其中解答中熟记分层抽样的定义和抽取的方法是解答的关键,着重考查了运算与求解能力,属于基础题.12、【解析】

根据自变量的取值范围,利用作差法即可比较大小.【详解】,,,所以当时,所以,即,故答案为:.【点睛】本题考查了作差法比较整式的大小,属于基础题.13、【解析】

设球的半径为r,则,,,所以,故答案为.考点:圆柱,圆锥,球的体积公式.点评:圆柱,圆锥,球的体积公式分别为.14、【解析】

利用函数的单调性,结合函数的定义域求解即可.【详解】因为函数的定义域是,,函数是增函数,所以函数的最小值为:,最大值为:.所以函数的值域为:,.故答案为,.【点睛】本题考查函数的单调性以及函数的值域的求法,考查计算能力.15、2【解析】

.16、【解析】

先利用累乘法计算,再通过裂项求和计算.【详解】,数列的前项和故答案为:【点睛】本题考查了累乘法,裂项求和,属于数列的常考题型.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2);(3).【解析】

(1)识别频率直方图,注意其纵轴的意义;(2)在频率直方图中平均数是每组数据的组中值乘以频率,中位数是排在最中间的数;(3)求出古典概型中的基本事情总数和具体事件数,利用比值求解.【详解】(1)由频率分布直方图知,年龄在的频率为所以,名读书者年龄分布在的人数为人.(2)名读书者年龄的平均数为:设中位数为,解之得,即名读书者年龄的中位数为岁.(3)年龄在的读书者有人,记为,;年龄在的读数者有人,记为,,,从上述人中选出人,共有如下基本事件:,共有基本事件数为个,记选取的两名读者中恰好有一人年龄在中为事件,则事件包含的基本事件数为个:故.【点睛】本题考查识别频率直方图和样本的数字特征,属于基础题.18、(1)(2)【解析】试题分析:(1)根据若做广告宣传,广告费为n千元比广告费为千元时多卖出件,可得,利用叠加法可求得.(2)根据题意在时,利润,可利用求最值.试题解析:(1)设表示广告费为0元时的销售量,由题意知,由叠加法可得即为所求。(2)设当时,获利为元,由题意知,,欲使最大,则,易知,此时.考点:叠加法求通项,求最值.19、(1)见解析(2)【解析】

(1)取的中点,连接,先证即说明,再由线面平行的判定定理说明平面.(2)延长交的延长线于,连.说明为所求二面角的平面角.再计算即可.【详解】解:(1)如图所示,取的中点,连接.∵,∴.又,∴.∴四边形为平行四边形.故.∵平面,平面,∴平面.(2)延长交的延长线于,连.由,知,为的中点,又为的中点,∴.又平面,,∴平面.∴为所求二面角的平面角.在等腰直角三角形中,易求.故所求二面角的大小为.【点睛】本题考查线面平行、二面角的平面角,属于中档题.20、(1)见解析;(2)【解析】

(1)只需证明平面,,即可得平面平面平面;(2)设,则,由四棱锥的侧面积,取得,在平面内作,垂足为.可得平面且,即可求四棱锥的体积.【详解】(1)由已知,得,,由于,故,从而平面,又平面,所以平面平面.(2)设,则,所以,从而,也为等腰直角三角形,为正三角形,于是四棱锥的侧面积,解得,在平面内作,垂足为,由(1)知,平面,故,可得平面且,故四棱锥的体积.【点睛】本题考查了面面垂直的判定与证明,以及四棱锥的体积的求解问题,意在考查学生的空间想象能力和逻辑推理能力,解答中熟记线面位置关系的判定定理和性质定理,通过严密推理是线面位置关系判定的关键,着重考查了推

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论