辽宁省凌源市三校2026届高一数学第二学期期末教学质量检测试题含解析_第1页
辽宁省凌源市三校2026届高一数学第二学期期末教学质量检测试题含解析_第2页
辽宁省凌源市三校2026届高一数学第二学期期末教学质量检测试题含解析_第3页
辽宁省凌源市三校2026届高一数学第二学期期末教学质量检测试题含解析_第4页
辽宁省凌源市三校2026届高一数学第二学期期末教学质量检测试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

辽宁省凌源市三校2026届高一数学第二学期期末教学质量检测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知等差数列的公差为2,且是与的等比中项,则等于()A. B. C. D.2.设函数,若函数恰有两个零点,则实数的取值范围为()A. B. C. D.3.要得到函数的图像,只需要将函数的图像()A.向右平移个长度单位 B.向左平移个长度单位C.向右平移个长度单位 D.向左平移个长度单位4.在等差数列中,已知=2,=16,则为()A.8 B.128 C.28 D.145.已知,成等差数列,成等比数列,则的最小值是A.0 B.1 C.2 D.46.设集合,,则()A. B. C. D.7.已知直线与直线垂直,则()A. B. C.或 D.或8.直线与圆相交于M,N两点,若.则的取值范围是()A. B. C. D.9.在四边形中,若,且,则四边形是()A.矩形 B.菱形 C.正方形 D.梯形10.已知点,为坐标原点,分别在线段上运动,则的周长的最小值为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.某中学从甲乙丙3人中选1人参加全市中学男子1500米比赛,现将他们最近集训中的10次成绩(单位:秒)的平均数与方差制成如下的表格:甲乙丙平均数250240240方差151520根据表中数据,该中学应选__________参加比赛.12.程的解为______.13.已知直线过点,,则直线的倾斜角为______.14.已知等差数列中,首项,公差,前项和,则使有最小值的_________.15.若A(-2,3),B(3,-2),C(4,m)三点共线则m的值为________.16.在中,角的对边分别为,且面积为,则面积的最大值为_____.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.有同一型号的汽车100辆,为了解这种汽车每耗油所行路程的情况,现从中随机地抽出10辆,在同一条件下进行耗油所行路程的试验,得到如下样本数据(单位:km):13.7,12.7,14.4,13.8,13.3,12.5,13.5,13.6,13.1,13.4,并分组如下:(1)完成上面的频率分布表;(2)根据上表,在坐标系中画出频率分布直方图.18.某车间为了规定工时定额,需要确定加工零件所花费的时间,为此做了四次试验,得到的数据如表所示:零件的个数个2345加工的时间2.5344.51求出y关于x的线性回归方程;2试预测加工10个零件需要多少时间?19.的内角的对边分别为,已知.(1)求;(2)若为锐角三角形,且,求面积的取值范围.20.随着互联网的不断发展,手机打车软件APP也不断推出.在某地有A、B两款打车APP,为了调查这两款软件叫车后等候的时间,用这两款APP分别随机叫了50辆车,记录了候车时间如下表:A款软件:候车时间(分钟)车辆数212812142B款软件:候车时间(分钟)车辆数21028721(1)试画出A款软件候车时间的频率分布直方图,并估计它的众数及中位数;(2)根据题中所给的数据,将频率视为概率(i)能否认为B款软件打车的候车时间不超过6分钟的概率达到了75%以上?(ii)仅从两款软件的平均候车时间来看,你会选择哪款打车软件?21.某校为创建“绿色校园”,在校园内种植树木,有A、B、C三种树木可供选择,已知这三种树木6年内的生长规律如下:A树木:种植前树木高0.84米,第一年能长高0.1米,以后每年比上一年多长高0.2米;B树木:种植前树木高0.84米,第一年能长高0.04米,以后每年生长的高度是上一年生长高度的2倍;C树木:树木的高度(单位:米)与生长年限(单位:年,)满足如下函数:(表示种植前树木的高度,取).(1)若要求6年内树木的高度超过5米,你会选择哪种树木?为什么?(2)若选C树木,从种植起的6年内,第几年内生长最快?

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】

直接利用等差数列公式和等比中项公式得到答案.【详解】是与的等比中项,故即解得:故选:A【点睛】本题考查了等差数列和等比中项,属于常考题型.2、A【解析】

首先注意到,是函数的一个零点.当时,将分离常数得到,构造函数,画出的图像,根据“函数与函数有一个交点”结合图像,求得的取值范围.【详解】解:由恰有两个零点,而当时,,即是函数的一个零点,故当时,必有一个零点,即函数与函数必有一个交点,利用单调性,作出函数图像如下所示,由图可知,要使函数与函数有一个交点,只需即可.故实数的取值范围是.故选:A.【点睛】本小题主要考查已知函数零点个数,求参数的取值范围,考查数形结合的数学思想方法,属于中档题.3、D【解析】

根据的图像变换规律求解即可【详解】设平移量为,则由,满足:,故由向左平移个长度单位可得到故选:D【点睛】本题考查函数的图像变换规律,属于基础题4、D【解析】

将已知条件转化为的形式列方程组,解方程组求得,进而求得的值.【详解】依题意,解得,故.故选:D.【点睛】本小题主要考查等差数列通项的基本量计算,属于基础题.5、D【解析】解:∵x,a,b,y成等差数列,x,c,d,y成等比数列根据等差数列和等比数列的性质可知:a+b=x+y,cd=xy,当且仅当x=y时取“=”,6、C【解析】分析:利用一元二次不等式的解法化简集合,由子集的定义可得结果.详解:,,,故选C.点睛:本题主要考查解一元二次不等式,集合的子集的定义,属于容易题,在解题过程中要注意考虑端点是否可以取到,这是一个易错点,同时将不等式与集合融合,体现了知识点之间的交汇.7、D【解析】

由垂直,可得,即可求出的值.【详解】直线与直线垂直,,解得或.故选D.【点睛】对于直线:和直线:,①;②.8、A【解析】

可通过将弦长转化为弦心距问题,结合点到直线距离公式和勾股定理进行求解【详解】如图所示,设弦中点为D,圆心C(3,2),弦心距,又,由勾股定理可得,答案选A【点睛】圆与直线的位置关系解题思路常从两点入手:弦心距、勾股定理。处理过程中,直线需化成一般式9、A【解析】

根据向量相等可知四边形为平行四边形;由数量积为零可知,从而得到四边形为矩形.【详解】,可知且四边形为平行四边形由可知:四边形为矩形本题正确选项:【点睛】本题考查相等向量、垂直关系的向量表示,属于基础题.10、C【解析】

分别求出设关于直线对称的点,关于对称的点,当共线时,的周长取得最小值,为,利用两点间的距离公式,求出答案.【详解】过两点的直线方程为设关于直线对称的点,则,解得即,同理可求关于对称的点,当共线时的周长取得最小值为.故选C.【点睛】本题主要考查了点关于直线的对称性的简单应用,试题的技巧性较强,属于中档题.二、填空题:本大题共6小题,每小题5分,共30分。11、乙;【解析】

一个看均值,要均值小,成绩好;一个看方差,要方差小,成绩稳定.【详解】乙的均值比甲小,与丙相同,乙的方差与甲相同,但比丙小,即乙成绩好,又稳定,应选乙、故答案为乙.【点睛】本题考查用样本的数据特征来解决实际问题.一般可看均值(找均值好的)和方差(方差小的稳定),这样比较易得结论.12、【解析】

设,即求二次方程的正实数根,即可解决问题.【详解】设,即转化为求方程的正实数根由得或(舍)所以,则故答案为:【点睛】本题考查指数型二次方程,考查换元法,属于基础题.13、【解析】

根据两点求斜率的公式求得直线的斜率,然后求得直线的倾斜角.【详解】依题意,故直线的倾斜角为.【点睛】本小题主要考查两点求直线斜率的公式,考查直线斜率和倾斜角的对应关系,属于基础题.14、或【解析】

求出,然后利用,求出的取值范围,即可得出使得有最小值的的值.【详解】,令,解得.因此,当或时,取得最小值.故答案为:或.【点睛】本题考查等差数列前项和的最小值求解,可以利用二次函数性质求前项和的最小值,也可以转化为数列所有非正数项相加,考查计算能力,属于中等题.15、-3【解析】

根据三点共线与斜率的关系即可得出.【详解】kAB=-2-33-(-2)=-1,k∵A(-2,3),B(3,-2),C(4,m)三点共线,∴﹣1=-3-m6,解得m=故答案为-3.【点睛】本题考查了三点共线与斜率的关系,考查了推理能力与计算能力,属于基础题.16、【解析】

利用三角形面积构造方程可求得,可知,从而得到;根据余弦定理,结合基本不等式可求得,代入三角形面积公式可求得最大值.【详解】,由余弦定理得:(当且仅当时取等号)本题正确结果:【点睛】本题考查解三角形问题中的三角形面积的最值问题的求解;求解最值问题的关键是能够通过余弦定理构造等量关系,进而利用基本不等式求得边长之积的最值,属于常考题型.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2)见解析【解析】

(1)通过所给数据算出频数和频率值,并填入表格中;(2)计算每组数中的频率除以组距的值,再画出直方图.【详解】(1)频率分布表如下:分组频数频率[12.45,12.95)20.2[12.95,13.45)30.3[13.45,13.95)40.4[13.95,14.45)10.1合计101.0(2)频率分布直方图如图所示:【点睛】本题考查频率分布表和频率分布直方图的简单应用,考查基本的数据处理能力.18、(1);(2)小时【解析】

(1)由已知数据求得与的值,则线性回归方程可求;(2)在(1)中求得的回归方程中,取求得值即可.【详解】(1)由表中数据得:,,,,,,.(2)将代入回归直线方程,(小时).预测加工10个零件需要小时.【点睛】本题考查了回归分析,解答此类问题的关键是利用公式计算,计算要细心.19、(1);(2).【解析】

(1)利用正弦定理化简题中等式,得到关于B的三角方程,最后根据A,B,C均为三角形内角解得.(2)根据三角形面积公式,又根据正弦定理和得到关于的函数,由于是锐角三角形,所以利用三个内角都小于来计算的定义域,最后求解的值域.【详解】(1)根据题意,由正弦定理得,因为,故,消去得.,因为故或者,而根据题意,故不成立,所以,又因为,代入得,所以.(2)因为是锐角三角形,由(1)知,得到,故,解得.又应用正弦定理,,由三角形面积公式有:.又因,故,故.故的取值范围是【点睛】这道题考查了三角函数的基础知识,和正弦定理或者余弦定理的使用(此题也可以用余弦定理求解),最后考查是锐角三角形这个条件的利用.考查的很全面,是一道很好的考题.20、(1)直方图见解析,众数为9,中位数为6.5(2)(i)能(ii)B款【解析】

(1)画出频率分布直方图,计算众数和中位数得到答案.(2)计算概率为,得到答案;分别计算两个软件的平均候车时间比较得到答案.【详解】(1)频率分布直方图如图:它的众数为9,它的中位数为:.(2)(i)B款软件打车的候车时间不超过6分钟的概率为.所以可以认为B款软件打车的候车时间不超过6分钟的概率达到了75%以上.(ii)A款软件打车的平均候车时间为:(分钟).B款软件打车的平均候车时间为:(分钟).所以选择B款软件打车软件.【点睛】本题考查了频率分布直方图,平均值,中位数,众数,意在考查学生的应用能力.21、(1)选择C;(2)第4或第5年.【解析】

(1)根据已知求出三种树木六年末的高度,判断得解;(2)设为第年内树木生长的高度,先求出,设,则,.再利用分析函数的单调性,分析函数的图像得解.【

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论