河南省济源四中2026届高一数学第二学期期末教学质量检测试题含解析_第1页
河南省济源四中2026届高一数学第二学期期末教学质量检测试题含解析_第2页
河南省济源四中2026届高一数学第二学期期末教学质量检测试题含解析_第3页
河南省济源四中2026届高一数学第二学期期末教学质量检测试题含解析_第4页
河南省济源四中2026届高一数学第二学期期末教学质量检测试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河南省济源四中2026届高一数学第二学期期末教学质量检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.截一个几何体,各个截面都是圆面,则这个几何体一定是()A.圆柱 B.圆锥 C.球 D.圆台2.已知圆锥的表面积为,且它的侧面展开图是一个半圆,则圆锥的底面半径为A. B. C. D.()3.若,则()A. B. C. D.4.已知两个正数a,b满足,则的最小值是(

)A.2 B.3 C.4 D.55.已知,,且,则实数等于()A.-1 B.-9 C.3 D.96.在中,内角所对的边分别是.已知,,,则A. B. C. D.7.《张丘建算经》中女子织布问题为:某女子善于织布,一天比一天织得快,且从第2天开始,每天比前一天多织相同量的布,已知第一天织5尺布,一月(按30天计)共织390尺布,则从第2天起每天比前一天多织()尺布.A. B. C. D.8.如图的折线图为某小区小型超市今年一月份到五月份的营业额和支出数据(利润=营业额-支出),根据折线图,下列说法中正确的是()A.该超市这五个月中,利润随营业额的增长在增长B.该超市这五个月中,利润基本保持不变C.该超市这五个月中,三月份的利润最高D.该超市这五个月中的营业额和支出呈正相关9.在等腰梯形ABCD中,,点E是线段BC的中点,若,则A. B. C. D.10.在正方体中,直线与直线所成角是()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知为所在平面内一点,且,则_____12.如图,在水平放置的边长为1的正方形中随机撤1000粒豆子,有400粒落到心形阴影部分上,据此估计心形阴影部分的面积为_________.13.已知函数,该函数零点的个数为_____________14.圆与圆的公共弦长为______________。15.已知等差数列的前项和为,且,,则;16.已知向量a=1,2,b=2,-2,c=三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知向量.(1)若向量,且,求的坐标;(2)若向量与互相垂直,求实数的值.18.在中,内角A、B、C所对的边分别为,,,已知.(Ⅰ)求角B的大小;(Ⅱ)设,,求.19.已知数列为等差数列,且.(1)求数列的通项公式;(2)求数列的前项和.20.如图,在中,角,,的对边分别为,,,且.(1)求的大小;(2)若,为外一点,,,求四边形面积的最大值.21.在等差数列中,(Ⅰ)求通项;(Ⅱ)求此数列前30项的绝对值的和.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】

试题分析:圆柱截面可能是矩形;圆锥截面可能是三角形;圆台截面可能是梯形,该几何体显然是球,故选C.2、C【解析】解:3、D【解析】

将指数形式化为对数形式可得,再利用换底公式即可.【详解】解:因为,所以,故选:D.【点睛】本题考查了指数与对数的互化,重点考查了换底公式,属基础题.4、D【解析】

根据题意,分析可得,对其变形可得,由基本不等式分析可得答案.【详解】解:根据题意,正数,满足,则;即的最小值是;故选:.【点睛】本题考查基本不等式的性质以及应用,关键是掌握基本不等式应用的条件.5、C【解析】

由可知,再利用坐标公式求解.【详解】因为,,且,所以,即,解得,故选:C.【点睛】本题考查向量的坐标运算,解题关键是明确.6、B【解析】

由已知三边,利用余弦定理可得,结合,为锐角,可得,利用三角形内角和定理即可求的值.【详解】在中,,,,由余弦定理可得:,,故为锐角,可得,,故选.【点睛】本题主要考查利用余弦定理解三角形以及三角形内角和定理的应用.7、B【解析】由题可知每天织的布的多少构成等差数列,其中第一天为首项,一月按30天计可得,从第2天起每天比前一天多织的即为公差.又,解得.故本题选B.8、D【解析】

根据折线图,分析出超市五个月中利润的情况以及营业额和支出的相关性.【详解】对于A选项,五个月的利润依次为:,其中四月比三月是下降的,故A选项错误.对于B选项,五月的月份是一月和四月的两倍,说明利润有比较大的波动,故B选项错误.对于C选项,五个月的利润依次为:,所以五月的利润最高,故C选项错误.对于D选项,根据图像可知,超市这五个月中的营业额和支出呈正相关,故D选项正确.故选:D【点睛】本小题主要考查折线图的分析与理解,属于基础题.9、B【解析】

利用平面向量的几何运算,将用和表示,根据平面向量基本定理得,的值,即可求解.【详解】取AB的中点F,连CF,则四边形AFCD是平行四边形,所以,且因为,,,∴故选B.【点睛】本题主要考查了平面向量的基本定理的应用,其中解答中根据平面向量的基本定理,将用和进行表示,求得的值是解答的关键,着重考查了推理与运算能力,属于基础题.10、B【解析】

直线与直线所成角为,为等边三角形,得到答案.【详解】如图所示:连接易知:直线与直线所成角为为等边三角形,夹角为故答案选B【点睛】本题考查了异面直线夹角,意在考查学生的空间想象能力.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

将向量进行等量代换,然后做出对应图形,利用平面向量基本定理进行表示即可.【详解】解:设,则根据题意可得,,如图所示,作,垂足分别为,则又,,故答案为.【点睛】本题考查了平面向量基本定理及其意义,两个向量的加减法及其几何意义,属于中档题.12、0.4【解析】

根据几何概型的计算,反求阴影部分的面积即可.【详解】设阴影部分的面积为,根据几何概型的概率计算公式:,解得.故答案为:.【点睛】本题考查几何概型的概率计算公式,属基础题.13、3【解析】

令,可得或;当时,可解得为函数一个零点;当时,可知,根据的范围可求得零点;综合两种情况可得零点总个数.【详解】令,可得:或当时,或(舍)为函数的一个零点当时,,,为函数的零点综上所述,该函数的零点个数为:个本题正确结果:【点睛】本题考查函数零点个数的求解,关键是能够将问题转化为方程根的个数的求解,涉及到余弦函数零点的求解.14、【解析】

利用两圆一般方程求两圆公共弦方程,求其中一圆到公共弦的距离,利用直线被圆截得的弦长公式可得所求.【详解】由两圆方程相减得两圆公共弦方程为,即,圆化为,圆心到直线的距离为1,所以两圆公共弦长为,故答案为.【点睛】本题考查两圆位置关系,直线与圆的位置关系,考查运算能力,属于基本题.15、1【解析】

若数列{an}为等差数列则Sm,S2m-Sm,S3m-S2m仍然成等差数列.所以S10,S20-S10,S30-S20仍然成等差数列.因为在等差数列{an}中有S10=10,S20=30,所以S30=1.故答案为1.16、1【解析】

由两向量共线的坐标关系计算即可.【详解】由题可得2∵c//∴4λ-2=0故答案为1【点睛】本题主要考查向量的坐标运算,以及两向量共线的坐标关系,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)或(2)【解析】

(1)因为,所以可以设求出坐标,根据模长,可以得到参数的方程.(2)由于已知条件可以计算出与坐标(含有参数)而两向量垂直,可以得到关于的方程,完成本题.【详解】(1)法一:设,则,所以解得所以或法二:设,因为,,所以,因为,所以解得或,所以或(2)因为向量与互相垂直所以,即而,,所以,因此,解得【点睛】考查了向量的线性表示,引入参数,只要我们能建立起引入参数的方程,则就能计算出所求参数值,从而完成本题.18、(Ⅰ);(Ⅱ).【解析】

(Ⅰ)在△ABC中,利用正弦定理及其.可得,利用和差公式化简整理可得B.(Ⅱ)在△ABC中,利用余弦定理即可得出b.【详解】(Ⅰ)在△ABC中,由正弦定理,又.可得,∴sinBcosBsinB,则.又∵B∈(0,π),可得.(Ⅱ)在△ABC中,由余弦定理及a=2,c=3,,∴b2=a2+c2﹣2accosB=4+9﹣2×2×3×cos7,解得.【点睛】本题考查了正弦定理、余弦定理、和差公式,考查了推理能力与计算能力,属于中档题.19、(1);(2).【解析】试题分析:(1)由于为等差数列,根据已知条件求出的第一项和第三项求得数列的公差,即得数列的通项公式,移项可得数列的通项公式;(2)由(1)可知,通过分组求和根据等差数列和等比数列的前项和公式求得的前项和.试题解析:(1)设数列的公差为,∵,∴,∴,∴.(2)考点:等差数列的通项公式及数列求和.20、(1)(2)【解析】

(1)由余弦定理和诱导公式整理,得到,求出;(2)在中,用余弦定理表示出,判断是等腰直角三角形,再利用三角形面积公式表示出,再利用辅助角公式化简,求出四边形面积的最大值.【详解】(1)在中,由,所以∵,∴,∴,又∵,∴.又∵,∴,即为.(2)在中,,,由余弦定理可得,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论