云南衡水实验中学2026届高一数学第二学期期末学业质量监测试题含解析_第1页
云南衡水实验中学2026届高一数学第二学期期末学业质量监测试题含解析_第2页
云南衡水实验中学2026届高一数学第二学期期末学业质量监测试题含解析_第3页
云南衡水实验中学2026届高一数学第二学期期末学业质量监测试题含解析_第4页
云南衡水实验中学2026届高一数学第二学期期末学业质量监测试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

云南衡水实验中学2026届高一数学第二学期期末学业质量监测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数,,若对任意,存在,使得成立,则实数m的取值范围是()A. B. C. D.2.某学生4次模拟考试英语作文的减分情况如下表:显然与之间有较好的线性相关关系,则其线性回归方程为()A. B.C. D.3.已知角的终边经过点,则的值是()A. B. C. D.4.设复数(是虚数单位),则在复平面内,复数对应的点的坐标为()A. B. C. D.5.得到函数的图象,只需将的图象()A.向左移动 B.向右移动 C.向左移动 D.向右移动6.设点是棱长为的正方体的棱的中点,点在面所在的平面内,若平面分别与平面和平面所成的锐二面角相等,则点到点的最短距离是()A. B. C. D.7.设等差数列{an}的前n项的和Sn,若a2+a8=6,则S9=()A.3 B.6 C.27 D.548.已知一个等比数列项数是偶数,其偶数项之和是奇数项之和的3倍,则这个数列的公比为()A.2 B.3 C.4 D.69.法国学者贝特朗发现,在研究事件A“在半径为1的圆内随机地取一条弦,其长度超过圆内接等边三角形的边长3”的概率的过程中,基于对“随机地取一条弦”的含义的的不同理解,事件A的概率PA存在不同的容案该问题被称为贝特朗悖论现给出种解释:若固定弦的一个端点,另个端点在圆周上随机选取,则PA.12 B.13 C.110.要得到函数的图象,只需将函数的图象()A.向左平移个单位长度 B.向右平移个单位长度C.向左平移个单位长度 D.向右平移个单位长度二、填空题:本大题共6小题,每小题5分,共30分。11.若函数,的图像关于对称,则________.12.已知,则______;的最小值为______.13.在等比数列中,,,则______________.14.己知数列满足就:,,若,写出所有可能的取值为______.15.在数列中,,是其前项和,当时,恒有、、成等比数列,则________.16.函数的图象在点处的切线方程是,则__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,四面体中,,,为的中点.(1)证明:;(2)已知是边长为2正三角形.(Ⅰ)若为棱的中点,求的大小;(Ⅱ)若为线段上的点,且,求四面体的体积的最大值.18.已知函数,.(1)求解不等式;(2)若,求的最小值.19.解方程:.20.在中,角的对边分别为.若.(1)求;(2)求的面积的最大值.21.已知数列是等差数列,是其前项和.(1)求数列的通项公式;(2)设,求数列的前项和.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】,当时,对于∵对任意,存在,使得成立,,解得实数的取值范围是.

故选D.【点睛】本题考查三角函数恒等变换,其中解题时问题转化为求三角函数的值域并利用集合关系是解决问题的关键,2、D【解析】

求出样本数据的中心,代入选项可得D是正确的.【详解】,所以这组数据的中心为,对选项逐个验证,可知只有过样本点中心.【点睛】本题没有提供最小二乘法的公式,所以试题的意图不是考查公式计算,而是要考查回归直线过样本点中心这一概念.3、D【解析】

首先计算出,根据三角函数定义可求得正弦值和余弦值,从而得到结果.【详解】由三角函数定义知:,,则:本题正确选项:【点睛】本题考查任意角三角函数的求解问题,属于基础题.4、A【解析】,所以复数对应的点为,故选A.5、B【解析】

直接利用三角函数图象的平移变换法则,对选项中的变换逐一判断即可.【详解】函数的图象,向左平移个单位,得,错;函数的图象,向右平移个单位,得,对.函数的图象,向左平移个单位,得,错;函数的图象,向右平移个单位,得,错,故选B.【点睛】本题考查了三角函数的图象,重点考查学生对三角函数图象变换规律的理解与掌握,能否正确处理先周期变换后相位变换这种情况下图象的平移问题,反映学生对所学知识理解的深度.6、B【解析】

以为原点,为轴为轴为轴,建立空间直角坐标系,计算三个平面的法向量,根据夹角相等得到关系式:,再利用点到直线的距离公式得到答案.【详解】`以为原点,为轴为轴为轴,建立空间直角坐标系.则易知:平面的法向量为平面的法向量为设平面的法向量为:则,取平面分别与平面和平面所成的锐二面角相等或看作平面的两条平行直线,到的距离.根据点到直线的距离公式得,点到点的最短距离都是:故答案为B【点睛】本题考查了空间直角坐标系,二面角,最短距离,意在考查学生的计算能力和空间想象能力.7、C【解析】

利用等差数列的性质和求和公式,即可求得的值,得到答案.【详解】由题意,等差数列的前n项的和,由,根据等差数列的性质,可得,所以,故选:C.【点睛】本题主要考查了等差数列的性质,以及等差数列的前n项和公式的应用,着重考查了推理与运算能力,属于基础题.8、B【解析】

由数列为等比数列,则,结合题意即可得解.【详解】解:因为数列为等比数列,设等比数列的公比为,则,又是奇数项之和的3倍,则,故选:B.【点睛】本题考查了等比数列的性质,重点考查了等比数列公比的运算,属基础题.9、B【解析】

由几何概型中的角度型得:P(A)=2π【详解】设固定弦的一个端点为A,则另一个端点在圆周上BC劣弧上随机选取即可满足题意,则P(A)=2π故选:B.【点睛】本题考查了几何概型中的角度型,属于基础题.10、C【解析】

由,则只需将函数的图象向左平移个单位长度.【详解】解:因为,所以要得到函数的图象,只需将函数的图象向左平移个单位长度.故选:C.【点睛】本题考查了三角函数图像的平移变换,属基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

特殊值法:由的对称轴是,所以即可算出【详解】由题意得是三角函数所以【点睛】本题主要考查了三角函数的性质,需要记忆三角函数的基本性质:单调性、对称轴、周期、定义域、最值、对称中心等。根据对称性取特殊值法解决本题是关键。属于中等题。12、50【解析】

由分段函数的表达式,代入计算即可;先求出的表达式,结合分段函数的性质,求最小值即可.【详解】由,可得,,所以;由的表达式,可得,当时,,此时,当时,,由二次函数的性质可知,,综上,的最小值为0.故答案为:5;0.【点睛】本题考查求函数值,考查分段函数的性质,考查函数最值的计算,考查学生的计算能力,属于基础题.13、1【解析】

根据已知两项求出数列的公比,然后根据等比数列的通项公式进行求解即可.【详解】∵a1=1,a5=4∴公比∴∴该等比数列的通项公式a3=11=1故答案为:1.【点睛】本题主要考查了等比数列的通项公式,一般利用基本量的思想,属于基础题.14、【解析】(1)若为偶数,则为偶,故①当仍为偶数时,故②当为奇数时,故得m=4。(2)若为奇数,则为偶数,故必为偶数,所以=1可得m=515、.【解析】

由题意得出,当时,由,代入,化简得出,利用倒数法求出的通项公式,从而得出的表达式,于是可求出的值.【详解】当时,由题意可得,即,化简得,得,两边取倒数得,,所以,数列是以为首项,以为公差的等差数列,,,则,因此,,故答案为:.【点睛】本题考查数列极限的计算,同时也考查了数列通项的求解,在含的数列递推式中,若作差法不能求通项时,可利用转化为的递推公式求通项,考查分析问题和解决问题的能力,综合性较强,属于中等题.16、【解析】由导数的几何意义可知,又,所以.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2)(Ⅰ);(Ⅱ)【解析】

(1)取中点,连接,通过证明,证得平面,由此证得.(2)(I)通过证明,证得平面,由此证得,利用“直斜边的中线等于斜边的一半”这个定理及其逆定理,证得.(II)利用求得四面体的体积的表达式,结合基本不等式求得四面体的体积的最大值.【详解】(1)取的中点,所以,所以.又因为,所以,又,所以面,所以.(2)(Ⅰ)由题意得,在正三角形中,,又因为,且,所以面,所以.∵为棱的中点,∴,在中,为的中点,.∴(Ⅱ),四面体的体积,又因为,即,所以等号当且仅当时成立,此时.故所求的四面体的体积的最大值为.【点睛】本小题主要考查线线垂直的证明,考查线面垂直的证明,考查直角三角形的判定,考查三棱锥体积的最大值的求法,考查基本不等式的运用,考查空间想象能力和逻辑推理能力,属于中档题.18、(1)或(2)【解析】

(1)对x分类讨论解不等式得解;(2)由题得,再利用基本不等式求函数的最小值.【详解】解:(1)当时,,解得.当时,,解得.所以不等式解集为或.(2),当且仅当,即时取等号.【点睛】本题主要考查分式不等式的解法,考查基本不等式求函数的最值,意在考查学生对这些知识的理解掌握水平,属于基础题.19、或或【解析】

由倍角公式可将题目中的方程变形解出来【详解】因为所以或由得由得所以所以或所以或综上:或或【点睛】,我们在解题的时候要灵活选择.20、(1)(2)【解析】

(1)用正弦定理将式子化为,进行整理化简可得的值,即得角B;(2)由余弦定理可得关于的等式,再利用基本不等式和三角形面积公式可得面积最大值。【详解】(1)由题得,,,,解得,,.(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论