湖南省邵阳市洞口四中2026届数学高一下期末质量跟踪监视试题含解析_第1页
湖南省邵阳市洞口四中2026届数学高一下期末质量跟踪监视试题含解析_第2页
湖南省邵阳市洞口四中2026届数学高一下期末质量跟踪监视试题含解析_第3页
湖南省邵阳市洞口四中2026届数学高一下期末质量跟踪监视试题含解析_第4页
湖南省邵阳市洞口四中2026届数学高一下期末质量跟踪监视试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖南省邵阳市洞口四中2026届数学高一下期末质量跟踪监视试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知变量,满足约束条件则取最大值为()A. B. C.1 D.22.已知点、、在圆上运动,且,若点的坐标为,的最大值为()A. B. C. D.3.在正项等比数列中,,数列的前项之和为()A. B. C. D.4.过点P(-2,4)作圆O:(x-2)2+(y-1)2=25的切线l,直线m:ax-3y=0与直线l平行,则直线l与m间的距离为()A.4 B.2 C.85 D.125.已知函数在区间上恒成立,则实数的最小值是()A. B. C. D.6.某几何体的三视图如图所示,则该几何体的体积为()A. B. C. D.7.已知,则角的终边所在的象限为()A.第一象限 B.第二象限 C.第三象限 D.第四象限8.已知三角形为等边三角形,,设点满足,若,则()A. B. C. D.9.已知扇形的面积为2cm2,扇形圆心角θ的弧度数是4,则扇形的周长为()A.2cm B.4cm C.6cm D.8cm10.《九章算术》是我国古代的数学名著,书中有如下问题:“今有五人分五钱,令上二人所得与下三人等.问各得几何.”其意思为“已知甲、乙、丙、丁、戊五人分5钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种重量单位).这个问题中,甲所得为()A.钱 B.钱 C.钱 D.钱二、填空题:本大题共6小题,每小题5分,共30分。11.已知,,则________.12.某县现有高中数学教师500人,统计这500人的学历情况,得到如下饼状图,该县今年计划招聘高中数学新教师,只招聘本科生和研究生,使得招聘后该县高中数学专科学历的教师比例下降到,且研究生的比例保持不变,则该县今年计划招聘的研究生人数为_______.13.若集合,,则集合________.14.如果函数的图象关于直线对称,那么该函数在上的最小值为_______________.15.已知数列的通项公式为,是其前项和,则_____.(结果用数字作答)16.已知函数一个周期的图象(如下图),则这个函数的解析式为__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.某工厂提供了节能降耗技术改造后生产产品过程中的产量(吨)与相应的生产能耗(吨)的几组对照数据.(1)请根据表中提供的数据,用最小二乘法求出关于的线性回归方程;(2)试根据(1)求出的线性回归方程,预测产量为(吨)的生产能耗.相关公式:,.18.如图,直四棱柱ABCD–A1B1C1D1的底面是菱形,AA1=4,AB=2,∠BAD=60°,E,M,N分别是BC,BB1,A1D的中点.(1)证明:MN∥平面C1DE;(2)求二面角A-MA1-N的正弦值.19.已知数列满足,且(,且).(1)求证:数列是等差数列;(2)求数列的通项公式(3)设数列的前项和,求证:.20.已知三棱柱中,三个侧面均为矩形,底面为等腰直角三角形,,点为棱的中点,点在棱上运动.(1)求证;(2)当点运动到某一位置时,恰好使二面角的平面角的余弦值为,求点到平面的距离;(3)在(2)的条件下,试确定线段上是否存在一点,使得平面?若存在,确定其位置;若不存在,说明理由.21.向量函数.(1)求的最小正周期及单调增区间;(2)求在区间上的最大值和最小值及取最值时的值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】

由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案.【详解】由约束条件作出可行域如图,当,即点,化目标函数为,由图可知,当直线过时,直线在轴上的截距最小,有最大值为.故选:C.【点睛】本题考查简单的线性规划,考查数形结合的解题思想方法,属于中档题.2、C【解析】

由题意可知为圆的一条直径,由平面向量加法的平行四边形法则可得(为坐标原点),然后利用平面向量模的三角不等式以及圆的几何性质可得出的最大值.【详解】如下图所示:,为圆的一条直径,由平面向量加法的平行四边形法则可得(为坐标原点),由平面向量模的三角不等式可得,当且仅当点的坐标为时,等号成立,因此,的最大值为.故选:C.【点睛】本题考查向量模的最值问题,涉及平面向量模的三角不等式以及圆的几何性质的应用,考查数形结合思想的应用,属于中等题.3、B【解析】

根据等比数列的性质,即可解出答案。【详解】故选B【点睛】本题考查等比数列的性质,同底对数的运算,属于基础题。4、A【解析】设l:ax-3y+m=0∴-2a-12+m=0∴ax-3y+2a+12=0因此|2a-3+2a+12|a2+32=5∴a=4,因此直线5、D【解析】

直接利用三角函数关系式的恒等变换,把函数的关系式变形为正弦型函数,进一步利用恒成立问题的应用求出结果.【详解】函数,由因为,所以,即,当时,函数的最大值为,由于在区间上恒成立,故,实数的最小值是.故选:D【点睛】本题考查了两角和的余弦公式、辅助角公式以及三角函数的最值,需熟记公式与三角函数的性质,同时考查了不等式恒成立问题,属于基出题6、C【解析】

通过三视图可以判断这一个是半个圆柱与半个圆锥形成的组合体,利用圆柱和圆锥的体积公式可以求出这个组合体的体积.【详解】该几何体为半个圆柱与半个圆锥形成的组合体,故,故选C.【点睛】本题考查了利用三视图求组合体图形的体积,考查了运算能力和空间想象能力.7、D【解析】由可知:则的终边所在的象限为第四象限故选8、D【解析】

用三角形的三边表示出,再根据已知的边的关系可得到关于的方程,解方程即得。【详解】由题得,,,整理得,化简得,解得.故选:D【点睛】本题考查平面向量的线性运算及平面向量基本定理,是常考题型。9、C【解析】设扇形的半径为R,则R2θ=2,∴R2=1R=1,∴扇形的周长为2R+θ·R=2+4=6(cm).10、B【解析】设甲、乙、丙、丁、戊所得钱分别为,则,解得,又,则,故选B.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

由二倍角求得α,则tanα可求.【详解】由sin2α=sinα,得2sinαcosα=sinα,∵,∴sinα≠0,则,即.∴.故答案为:.【点睛】本题考查三角函数的恒等变换及化简求值,考查公式的灵活应用,属于基础题.12、50【解析】

先计算出招聘后高中数学教师总人数,然后利用比例保持不变,得到该县今年计划招聘的研究生人数.【详解】招聘后该县高中数学专科学历的教师比例下降到,则招聘后,该县高中数学教师总人数为,招聘后研究生的比例保持不变,该县今年计划招聘的研究生人数为.【点睛】本题主要考查学生的阅读理解能力和分析能力,从题目中提炼关键字眼“比例保持不变”是解题的关键.13、【解析】由题意,得,,则.14、【解析】

根据三角公式得辅助角公式,结合三角函数的对称性求出值,再利用的取值范围求出函数的最小值.【详解】解:,令,则,则.因为函数的图象关于直线对称,所以,即,则,平方得.整理可得,则,所以函数.因为,所以,当时,即,函数有最小值为.故答案为:.【点睛】本题主要考查三角函数最值求解,结合辅助角公式和利用三角函数的对称性建立方程是解决本题的关键.15、.【解析】

由题意知,数列的偶数项成等差数列,奇数列成等比数列,然后利用等差数列和等比数列的求和公式可求出的值.【详解】由题意可得,故答案为.【点睛】本题考查奇偶分组求和,同时也考查等差数列求和以及等比数列求和,解题时要得出公差和公比,同时也要确定出对应的项数,考查运算求解能力,属于中等题.16、【解析】

由函数的图象可得T=﹣,解得:T==π,解得ω=1.图象经过(,1),可得:1=sin(1×+φ),解得:φ=1kπ+,k∈Z,由于:|φ|<,可得:φ=,故f(x)的解析式为:f(x)=.故答案为f(x)=.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)可以预测产量为(吨)的生产能耗为(吨)【解析】

(1)根据表格中的数据,求出,,,代入回归系数的公式可求得,再根据回归直线过样本中心点即可求解.由(1)将代入即可求解.【详解】(1)由题意,根据表格中的数据,求得,,,,代入回归系数的公式,求得,则,故线性回归方程为.(2)由(1)可知,当时,,则可以预测产量为(吨)的生产能耗为(吨).【点睛】本题考查了线性回归方程,需掌握回归直线过样本中心点这一特征,考查了学生的计算能力,属于基础题.18、(1)见解析;(2).【解析】

(1)利用三角形中位线和可证得,证得四边形为平行四边形,进而证得,根据线面平行判定定理可证得结论;(2)以菱形对角线交点为原点可建立空间直角坐标系,通过取中点,可证得平面,得到平面的法向量;再通过向量法求得平面的法向量,利用向量夹角公式求得两个法向量夹角的余弦值,进而可求得所求二面角的正弦值.【详解】(1)连接,,分别为,中点为的中位线且又为中点,且且四边形为平行四边形,又平面,平面平面(2)设,由直四棱柱性质可知:平面四边形为菱形则以为原点,可建立如下图所示的空间直角坐标系:则:,,,D(0,-1,0)取中点,连接,则四边形为菱形且为等边三角形又平面,平面平面,即平面为平面的一个法向量,且设平面的法向量,又,,令,则,二面角的正弦值为:【点睛】本题考查线面平行关系的证明、空间向量法求解二面角的问题.求解二面角的关键是能够利用垂直关系建立空间直角坐标系,从而通过求解法向量夹角的余弦值来得到二面角的正弦值,属于常规题型.19、(1)详见解析;(2);(3)详见解析.【解析】

(1)用定义证明得到答案.(2)推出(3)利用错位相减法和分组求和法得到,再证明不等式.【详解】解:(1)由,得,即.∴数列是以为首项,1为公差的等差数列.(2)∵数列是以为首项,1为公差的等差数列,∴,∴.(3).∴,∴.【点睛】本题考查了等差数列的证明,分组求和法,错位相减法,意在考查学生对于数列公式方法的灵活运用.20、(1)见解析;(2);(3)存在,为中点.【解析】

(1)以CB为x轴,CA为y轴,CC1为z轴,C为原点建立坐标系,设E(m,0,2),要证A1C⊥AE,可证,只需证明,利用向量的数量积运算即可证明;(2)分别求出平面EA1D、平面A1DB的一个法向量,由两法向量夹角余弦值的绝对值等于,解得m值,由此可得答案;(3)在(2)的条件下,设F(x,y,0),可知与平面A1DB的一个法向量平行,由此可求出点F坐标,进而求出||,即得答案.【详解】(1)以CB为x轴,CA为y轴,CC1为z轴,C为原点建立坐标系,设E(m,0,2),C(0,0,0),A(0,2,0),A1(0,2,2),D(0,0,1),B(2,0,0),=(0,﹣2,﹣2),=(m,﹣2,2),因为=0+(﹣2)×(﹣2)﹣2×2=0,所以⊥,即A1C⊥AE;(2)=(m,0,1),=(0,2,1),设=(x,y,z)为平面EA1D的一个法向量,则即,取=(2,m,﹣2m),=(2,0,﹣1),设=(x,y,z)为平面A1DB的一个法向量,则,即,取=(1,﹣1,2),由二面角E﹣A1D﹣B的平面角的余弦值为,得||=,解得m=1,平面A1DB的一个法向量=(1,﹣1,2),根据点E到面的距离为:.(3)由(2)知E(1,0,2),且=(1,﹣1,2)为平面A1DB的一个法向量,设F(x,y,0),则=(x﹣1,y,﹣2),且,所以x﹣1=﹣1,y=1,解得x=0,y=1,所以=(﹣1,1,﹣2),==,故EF的长度为,此时点F(0,1,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论