版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届河北省永清一中数学高一下期末学业质量监测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在中,,,,则=()A. B.C. D.2.如图,、两点为山脚下两处水平地面上的观测点,在、两处观察点观察山顶点的仰角分别为、若,,且观察点、之间的距离为米,则山的高度为()A.米 B.米 C.米 D.米3.已知点P(,)为角的终边上一点,则()A. B.- C. D.04.的三内角所对的边分别为,若,则角的大小是()A. B. C. D.5.函数图像的一条对称轴方程为()A. B. C. D.6.设函数,则是()A.最小正周期为的奇函数 B.最小正周期为的偶函数C.最小正周期为的奇函数 D.最小正周期为的偶函数7.在等比数列中,,,则()A.140 B.120 C.100 D.808.已知变量与负相关,且由观测数据算得样本平均数,则由该观测数据算得的线性回归方程可能是A. B.C. D.9.向量,,,满足条件.,则A. B. C. D.10.设函数,若关于的方程恰有个不同的实数解,则实数的取值范围为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.在平面直角坐标系中,经过三点(0,0),(1,1),(2,0)的圆的方程为__________.12.已知x、y满足约束条件,则的最小值为________.13.如图,在正方体中,有以下结论:①平面;②平面;③;④异面直线与所成的角为.则其中正确结论的序号是____(写出所有正确结论的序号).14.已知数列的通项公式为,则该数列的前1025项的和___________.15.函数的值域是______.16.若关于的不等式的解集为,则__________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数的最小正周期为,(1)求函数的单调递减区间;(2)若函数在区间上有两个零点,求实数的取值范围.18.如图,矩形中,平面,,为上的点,且平面,.(Ⅰ)求证:平面;(Ⅱ)求三棱锥的体积.19.如图,中,,角的平分线长为1.(1)求;(2)求边的长.20.如图,在中,,,,.(Ⅰ)求AB;(Ⅱ)求AD.21.若数列满足:存在正整数,对任意的,使得成立,则称为阶稳增数列.(1)若由正整数构成的数列为阶稳增数列,且对任意,数列中恰有个,求的值;(2)设等比数列为阶稳增数列且首项大于,试求该数列公比的取值范围;(3)在(1)的条件下,令数列(其中,常数为正实数),设为数列的前项和.若已知数列极限存在,试求实数的取值范围,并求出该极限值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】
根据正弦定理,代入即可求解.【详解】因为中,,,由正弦定理可知代入可得故选:C【点睛】本题考查了正弦定理在解三角形中的应用,属于基础题.2、A【解析】
过点作延长线于,根据三角函数关系解得高.【详解】过点作延长线于,设山的高度为故答案选A【点睛】本题考查了三角函数的应用,属于简单题.3、A【解析】
根据余弦函数的定义,可直接得出结果.【详解】因为点P(,)为角的终边上一点,则.故选A【点睛】本题主要考查三角函数的定义,熟记概念即可,属于基础题型.4、C【解析】
将进行整理,反凑余弦定理,即可得到角.【详解】因为即故可得又故.故选:C.【点睛】本题考查余弦定理的变形,属基础题.5、B【解析】
对称轴为【详解】依题意有解得故选B【点睛】本题考查的对称轴,属于基础题。6、D【解析】函数,化简可得f(x)=–cos2x,∴f(x)是偶函数.最小正周期T==π,∴f(x)最小正周期为π的偶函数.故选D.7、D【解析】
,计算出,然后将,得到答案.【详解】等比数列中,又因为,所以,所以,故选D项.【点睛】本题考查等比数列的基本量计算,属于简单题.8、D【解析】
由于变量与负相关,得回归直线的斜率为负数,再由回归直线经过样本点的中心,得到可能的回归直线方程.【详解】由于变量与负相关,排除A,B,把代入直线得:成立,所以在直线上,故选D.【点睛】本题考查回归直线斜率的正负、回归直线过样本点中心,考查基本数据处理能力.9、C【解析】向量,则,故解得.故答案为:C。10、B【解析】
由已知中函数,若关于的方程恰有个不同的实数解,可以根据函数的图象分析出实数的取值范围.【详解】函数的图象如下图所示:关于的方程恰有个不同的实数解,令t=f(x),可得t2﹣at+2=0,(*)则方程(*)的两个解在(1,2],可得,解得,故选:B.【点睛】本题考查的知识点是根的存在性及根的个数判断,其中根据已知中函数的解析式,画出函数的图象,再利用数形结合是解答本题的关键.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】分析:由题意利用待定系数法求解圆的方程即可.详解:设圆的方程为,圆经过三点(0,0),(1,1),(2,0),则:,解得:,则圆的方程为.点睛:求圆的方程,主要有两种方法:(1)几何法:具体过程中要用到初中有关圆的一些常用性质和定理.如:①圆心在过切点且与切线垂直的直线上;②圆心在任意弦的中垂线上;③两圆相切时,切点与两圆心三点共线.(2)待定系数法:根据条件设出圆的方程,再由题目给出的条件,列出等式,求出相关量.一般地,与圆心和半径有关,选择标准式,否则,选择一般式.不论是哪种形式,都要确定三个独立参数,所以应该有三个独立等式.12、-3【解析】
作出可行域,目标函数过点时,取得最小值.【详解】作出可行域如图表示:目标函数,化为,当过点时,取得最大值,则取得最小值,由,解得,即,的最小值为.故答案为:【点睛】本题考查二元一次不等式组表示平面区域,以及线性目标函数的最值,属于基础题.13、①③【解析】
①:利用线面平行的判定定理可以直接判断是正确的结论;②:举反例可以判断出该结论是错误的;③:可以利用线面垂直的判定定理,得到线面垂直,再利用线面垂直的性质定理可以判断是正确的结论;④:可以通过,可以判断出异面直线与所成的角为,即本结论是错误的,最后选出正确的结论序号.【详解】①:平面,平面平面,故本结论是正确的;②:在正方形中,,显然不垂直,而,所以不互相垂直,要是平面,则必有互相垂直,显然是不可能的,故本结论是错误的;③:平面,平面,,在正方形中,,平面,,所以平面,而平面,故,因此本结论是正确的;④:因为,所以异面直线与所成的角为,在正方形中,,故本结论是错误的,因此正确结论的序号是①③.【点睛】本题考查了线面平行的判定定理、线面垂直的判定定理、性质定理,考查了异面直线所成的角、线面垂直的性质.14、2039【解析】
根据所给分段函数,依次列举出当时的值,即可求得的值.【详解】当时,,当时,,,共1个2.当时,,,共3个2.当时,,,共7个2.当时,,,共15个2.当时,,,共31个2.当时,,,共63个2.当时,,,共127个2.当时,,,共255个2.当时,,,共511个2.当时,,,共1个2.所以由以上可知故答案为:2039【点睛】本题考查了分段函数的应用,由所给式子列举出各个项,即可求和,属于中档题.15、【解析】
先求得函数的定义域,根据函数在定义域内的单调性,求得函数的值域.【详解】依题意可知,函数的定义域为,且函数在区间上为单调递增函数,故当时,函数有最小值为,当时,函数有最大值为.所以函数函数的值域是.故答案为:.【点睛】本小题主要考查反正弦函数的定义域和单调性,考查正弦函数的单调性,考查利用函数的单调性求函数的值域,属于基础题.16、1【解析】
根据二次不等式和二次方程的关系,得到是方程的两根,由根与系数的关系得到的值.【详解】因为关于的不等式的解集为所以是方程的两根,,由根与系数的关系得,解得【点睛】本题考查一元二次不等式和一元二次方程之间的关系,根与系数之间的关系,属于简单题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)的单调递减区间为(2)【解析】
(1)由二倍角公式和两角和的正弦公式化函数为一个角的一个三角函数形式,然后得正弦函数的单调性求得减区间;(2)函数在区间上有两个零点可转化为函数与的图像有两个不同的交点.,利用函数图象可求解.【详解】(1)函数的最小正周期,故令,得故的单调递减区间为(2)函数在区间上有两个零点,即方程区间上有两个不同的实根,即函数与的图像有两个不同的交点.,故,结合单调性可知,要使函数与图像有两个不同的交点,则,所以【点睛】本题考查三角函数的图象与性质,考查二倍角公式和两角和的正弦公式,考查零点个数问题.解决函数零点个数问题通常需要转化与化归,即转化为函数图象交点个数问题,大多数情况是函数图象与直线交点个数问题.象本题,最后转化为求函数的单调性与极值(最值).18、(Ⅰ)见解析(Ⅱ)【解析】
(Ⅰ)先证明,再证明平面;(Ⅱ)由等积法可得即可求解.【详解】(Ⅰ)因为是中点,又因为平面,所以,由已知,所以是中点,所以,因为平面,平面,所以平面.(Ⅱ)因为平面,,所以平面,则,又因为平面,所以,则平面,由可得平面,因为,此时,,所以.【点睛】本题主要考查线面平行的判定及利用等积法求三棱锥的体积问题,属常规考题.19、(1)(2)【解析】
(1)由题意知为锐角,利用二倍角余弦公式结合条件可计算出的值;(2)利用内角和定理以及诱导公式计算出,在中利用正弦定理可计算出.【详解】(1),则B为锐角,;(2),在中,由,得.【点睛】本题考查二倍角余弦公式、以及利用正弦定理解三角形,解三角形有关问题时,要根据已知元素类型合理选择正弦定理与余弦定理,考查计算能力,属于中等题.20、(Ⅰ)(Ⅱ)【解析】
(Ⅰ)利用余弦定理,解得的长;(Ⅱ)利用正弦定理得,计算得,,再利用为直角三角形,进而可计算的长.【详解】(Ⅰ)在中,由余弦定理有,即,解得或(舍),所以.(Ⅱ)由(Ⅰ)得,在中,由正弦定理有,得,,所以,,又,则为直角三角形,所以,即,故.【点睛】本题考查余弦定理和正弦定理的简单应用,属于基础题.21、(1);(2);(3).【解析】
(1)设,由题意得出,求出正整数的值即可;(2)根据定义可知等比数列中的奇数项构成的等比数列为阶稳增数列,偶数项构成的等比数列也为阶稳增数列,分和两种情况讨论,列出关于的不等式,解出即可;(3)求出,然后分、和三种情况讨论,求出,结合数列的极限存在,求出实数的取值范围.【详解】(1)设,由于数列为阶稳增数列,则,对任意,数列中恰有个,则数列中的项依次为:、、、、、、、、、、、、、、、、,设数列中值为的最大项数为,则,由题意可得,即,,解得,因此,;(2)由于等比数列为阶稳增数列,即对任意的,,且.所以,等比数列中的奇数项构成的等比数列为阶稳增数列,偶数项构成的等比数列也为阶稳增数列.①当时,则等比数列中每项都为正数,由可得,整理得,解得;②当时,(i)若为正奇数,可设,则,由,得,即,整理得,解得;(ii)若为正偶数时,可设,则,由,得,即
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年国际金融规则及国际贸易常识考题集
- 2026年MBA商学论文答辩模拟试题企业经营与战略管理深度练习
- 2026年建筑设计与建筑构造知识题目集
- 2026年地理信息系统GIS应用技能模拟试题
- 2026年网络直播平台社群活跃度提升策略面试题集
- 2026年航天器设计与飞行控制题库含卫星导航系统研究
- 2026年音乐基础理论与乐器演奏技巧测试乐理知识题集
- 2026年证券从业资格考试金融市嘲基础知识专项训练
- 2026年钢琴演奏技巧进阶实操题集含乐理知识
- 2026年运动训练与运动生理学题集
- 2024年6月GESP编程能力认证Scratch图形化等级考试四级真题(含答案)
- 2025年水空调市场分析报告
- T/GFPU 1007-2022中小学幼儿园供餐潮汕牛肉丸
- 货运险培训课件
- 新收入准则税会差异课件
- 比亚迪股份有限公司盈利能力分析及提升对策研究
- 车辆资产闲置管理办法
- PICC管感染病例分析与管理要点
- 超声波成像技术突破-全面剖析
- 水电与新能源典型事故案例
- QC/T 822-2024汽车用压力传感器
评论
0/150
提交评论