浙江省湖州市八校联盟2026届高一数学第二学期期末学业水平测试模拟试题含解析_第1页
浙江省湖州市八校联盟2026届高一数学第二学期期末学业水平测试模拟试题含解析_第2页
浙江省湖州市八校联盟2026届高一数学第二学期期末学业水平测试模拟试题含解析_第3页
浙江省湖州市八校联盟2026届高一数学第二学期期末学业水平测试模拟试题含解析_第4页
浙江省湖州市八校联盟2026届高一数学第二学期期末学业水平测试模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

浙江省湖州市八校联盟2026届高一数学第二学期期末学业水平测试模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知m个数的平均数为a,n个数的平均数为b,则这个数的平均数为()A. B. C. D.2.的直观图如图所示,其中,则在原图中边的长为()A. B. C.2 D.3.已知圆的方程为,则圆心坐标为()A. B. C. D.4.函数的周期为()A. B. C. D.5.角的终边过点,则等于()A. B. C. D.6.等差数列中,若,则=()A.11 B.7 C.3 D.27.若圆与圆相切,则实数()A.9 B.-11 C.-11或-9 D.9或-118.阅读下面的程序框图,运行相应的程序,若输入的值为24,则输出的值为()A.0 B.1 C.2 D.39.某程序框图如图所示,若输出的,则判断框内应填()A. B. C. D.10.记等差数列前项和,如果已知的值,我们可以求得()A.的值 B.的值 C.的值 D.的值二、填空题:本大题共6小题,每小题5分,共30分。11.若数列满足(),且,,__.12.对任意实数,不等式恒成立,则实数的取值范围是____.13.在中,角,,所对的边分别为,,,若,则角最大值为______.14.已知向量为单位向量,向量,且,则向量的夹角为__________.15.设函数(是常数,).若在区间上具有单调性,且,则的最小正周期为_________.16.若关于的不等式有解,则实数的取值范围为________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.不等式的解集为______.18.如图所示,是边长为的正三角形,点四等分线段.(Ⅰ)求的值;(Ⅱ)若点是线段上一点,且,求实数的值.19.已知.(1)若不等式的解集为,求的值;(2)解不等式.20.近期,某公交公司分别推出支付宝和徽信扫码支付乘车活动,活动设置了一段时间的推广期,由于推广期内优惠力度较大,吸引越来越多的人开始使用扫码支付.某线路公交车队统计了活动刚推出一周内每一天使用扫码支付的人次,用x表示活动推出的天数,y表示每天使用扫码支付的人次(单位:十人次),统计数据如表l所示:表1根据以上数据,绘制了如右图所示的散点图.(1)根据散点图判断,在推广期内,y=a+bx与(2)根据(1)的判断结果及表1中的数据,求y关于x的回归方程,并预测活动推出第8天使用扫码支付的人次;参考数据:其中υ参考公式:对于一组数据u1,υ1,21.如图,在四棱锥P−ABCD中,AB//CD,且.(1)证明:平面PAB⊥平面PAD;(2)若PA=PD=AB=DC,,求二面角A−PB−C的余弦值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】

根据平均数的定义求解.【详解】两组数的总数为:则这个数的平均数为:故选:D【点睛】本题主要考查了平均数的定义,还考查了运算求解能力,属于基础题.2、D【解析】

由直观图确定原图形中三角形边的关系及长度,然后计算.【详解】在原图形中,,,∴.故选:D.【点睛】本题考查直观图,考查由直观图还原原平面图形.掌握斜二测画法的规则是解题关键.3、C【解析】试题分析:的方程变形为,圆心为考点:圆的方程4、D【解析】

利用二倍角公式以及辅助角公式将函数化为,再利用三角函数的周期公式即可求解.【详解】,函数的最小正周期为.故选:D【点睛】本题考查了二倍角的余弦公式、辅助角公式以及三角函数的最小正周期的求法,属于基础题.5、B【解析】由三角函数的定义知,x=-1,y=2,r==,∴sinα==.6、A【解析】

根据和已知条件即可得到.【详解】等差数列中,故选A.【点睛】本题考查了等差数列的基本性质,属于基础题.7、D【解析】

分别讨论两圆内切或外切,圆心距和半径之间的关系即可得出结果.【详解】圆的圆心坐标为,半径;圆的圆心坐标为,半径,讨论:当圆与圆外切时,,所以;当圆与圆内切时,,所以,综上,或.【点睛】本题主要考查圆与圆位置关系,由两圆相切求参数的值,属于基础题型.8、C【解析】

根据给定的程序框图,逐次循环计算,即可求解,得到答案.【详解】由题意,第一循环:,能被3整除,不成立,第二循环:,不能被3整除,不成立,第三循环:,不能被3整除,成立,终止循环,输出,故选C.【点睛】本题主要考查了程序框图的识别与应用,其中解答中根据条件进行模拟循环计算是解答的关键,着重考查了运算与求解能力,属于基础题.9、A【解析】

根据程序框图的结构及输出结果,逆向推断即可得判断框中的内容.【详解】由程序框图可知,,则所以此时输出的值,因而时退出循环.因而判断框的内容为故选:A【点睛】本题考查了根据程序框图的输出值,确定判断框的内容,属于基础题.10、C【解析】

设等差数列{an}的首项为a1,公差为d,由a5+a21=2a1+24d的值为已知,再利用等差数列的求和公式,即可得出结论.【详解】设等差数列{an}的首项为a1,公差为d,∵已知a5+a21的值,∴2a1+24d的值为已知,∴a1+12d的值为已知,∵∴我们可以求得S25的值.故选:C.【点睛】本题考查等差数列的通项公式与求和公式的应用,考查学生的计算能力,属于中档题.二、填空题:本大题共6小题,每小题5分,共30分。11、1【解析】

由数列满足,即,得到数列的奇数项和偶数项分别构成公比为的等比数列,利用等比数列的极限的求法,即可求解.【详解】由题意,数列满足,即,又由,,所以数列的奇数项构成首项为1,公比为,偶数项构成首项为,公比为的等比数列,当为奇数时,可得,当为偶数时,可得.所以.故答案为:1.【点睛】本题主要考查了等比数列的定义,以及无穷等比数列的极限的计算,其中解答中得出数列的奇数项和偶数项分别构成公比为的等比数列是解答的关键,着重考查了推理与运算能力,属于基础题.12、【解析】

分别在和两种情况下进行讨论,当时,根据二次函数图像可得不等式组,从而求得结果.【详解】①当,即时,不等式为:,恒成立,则满足题意②当,即时,不等式恒成立则需:解得:综上所述:本题正确结果:【点睛】本题考查不等式恒成立问题的求解,易错点是忽略不等式是否为一元二次不等式,造成丢根;处理一元二次不等式恒成立问题的关键是结合二次函数图象来得到不等关系,属于常考题型.13、【解析】

根据余弦定理列式,再根据基本不等式求最值【详解】因为所以角最大值为【点睛】本题考查余弦定理以及利用基本不等式求最值,考查基本分析求解能力,属中档题14、【解析】因为,所以,所以,所以,则.15、【解析】

由在区间上具有单调性,且知,函数的对称中心为,由知函数的对称轴为直线,设函数的最小正周期为,所以,,即,所以,解得,故答案为.考点:函数的对称性、周期性,属于中档题.16、【解析】

利用判别式可求实数的取值范围.【详解】不等式有解等价于有解,所以,故或,填.【点睛】本题考查一元二次不等式有解问题,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、【解析】

根据一元二次不等式的解法直接求解即可.【详解】因为方程的根为:,,所以不等式的解集为.故答案为:.【点睛】本题考查一元二次不等式的解法,考查对基础知识和基本技能的掌握,属于基础题.18、(Ⅰ)(Ⅱ)【解析】

(Ⅰ)以作为基底,表示出,然后利用数量积的运算法则计算即可求出;(Ⅱ)由平面向量数量积的运算及其运算可得:设,又,所以,解得,得解.【详解】(Ⅰ)由题意得,则(Ⅱ)因为点Q是线段上一点,所以设,又,所以,故,解得,因此所求实数m的值为.【点睛】本题主要考查了平面向量的线性运算以及数量积的运算以及平面向量基本定理的应用,属于中档题.19、(1);(2)时,解集为,时,解集为,时解集为.【解析】

(1)由一元二次不等式的解集一一元二次方程的解之间的联系求解;(2)按和的大小分类讨论.【详解】(1)由题意的解集为,则方程的解为1和4,∴,解得;(2)不等式为,时,,此时不等式解集为,时,,,当时,,。综上,原不等式的解集:时,解集为,时,解集为,时解集为.【点睛】本题考查解一元二次不等式,掌握三个二次的关系是解题关键,解题时注意对参数分类讨论.20、(1)y=c⋅dx【解析】

(1)根据散点图判断,y=c⋅dx适宜;(2)y=c⋅dx,两边同时取常用对数得:【详解】(1)根据散点图判断,y=c⋅dx适宜作为扫码支付的人数y关于活动推出天数(2)∵y=c⋅dx,两边同时取常用对数得:1gy=1g(c⋅d设1gy=v,∴v=1gc+1gd⋅x∵x=4,v∴lgd=把样本中心点(4,1.54)代入v=1gc+1gd⋅x,得:∴v=0.54+0.25x,∴y关于x的回归方程式:y=把x=8代入上式,y=3.47×活动推出第8天使用扫码支付的人次为3470;【点睛】本题考查回归分析,考查线性回归直线过样本中心点,在一组具有相关关系的变量的数据间,这样的直线可以画出许多条,而其中的一条能最好地反映x与Y之间的关系,这条直线过样本中心点.线性回归方程适用于具有相关关系的两个变量,对于具有确定关系的两个变量是不适用的,线性回归方程得到的预测值是预测变量的估计值,不是准确值.21、(1)见解析;(2).【解析】

(1)由已知,得AB⊥AP,CD⊥PD.由于AB//CD,故AB⊥PD,从而AB⊥平面PAD.又AB平面PAB,所以平面PAB⊥平面PAD.(2)在平面内作,垂足为,由(1)可知,平面,故,可得平面.以为坐标原点,的方向为轴正方向,为单位长,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论