深圳市平湖中学2026届高一数学第二学期期末监测试题含解析_第1页
深圳市平湖中学2026届高一数学第二学期期末监测试题含解析_第2页
深圳市平湖中学2026届高一数学第二学期期末监测试题含解析_第3页
深圳市平湖中学2026届高一数学第二学期期末监测试题含解析_第4页
深圳市平湖中学2026届高一数学第二学期期末监测试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

深圳市平湖中学2026届高一数学第二学期期末监测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在中,角、、所对的边分别为、、,若,则是()A.锐角三角形 B.直角三角形 C.钝角三角形 D.等腰三角形2.《莱因德纸草书》是世界上最古老的数学著作之一,书中有一道这样的题目:把100个面包分给五个人,使每个人所得成等差数列,最大的三份之和的是最小的两份之和,则最小的一份的量是()A. B. C. D.3.下列关于四棱柱的说法:①四条侧棱互相平行且相等;②两对相对的侧面互相平行;③侧棱必与底面垂直;④侧面垂直于底面.其中正确结论的个数为()A.1 B.2 C.3 D.44.已知数列的前项为和,且,则()A.5 B. C. D.95.将函数f(x)=sin(ωx+)(ω>0)的图象向左平移个单位,所得到的函数图象关于y轴对称,则函数f(x)的最小正周期不可能是()A. B. C. D.6.甲、乙两名选手参加歌手大赛时,5名评委打的分数用如图所示的茎叶图表示,s1,s2分别表示甲、乙选手分数的标准差,则s1与s2的关系是().A.s1>s2 B.s1=s2 C.s1<s2 D.不确定7.已知,则的值为()A. B. C. D.8.直线的倾斜角是()A.30° B.60° C.120° D.135°9.已知,所在平面内一点P满足,则()A. B. C. D.10.从装有4个红球和3个白球的袋中任取2个球,那么下列事件中,是对立事件的是()A.至少有1个白球;都是红球 B.至少有1个白球;至少有1个红球C.恰好有1个白球;恰好有2个白球 D.至少有1个白球;都是白球二、填空题:本大题共6小题,每小题5分,共30分。11.已知直线l与圆C:交于A,B两点,,则满足条件的一条直线l的方程为______.12.如图,已知扇形和,为的中点.若扇形的面积为1,则扇形的面积为______.13.已知等比数列中,若,,则_____.14.已知中,内角A,B,C的对边分别为a,b,c,,,则的面积为______;15.在空间直角坐标系中,点关于原点的对称点的坐标为______.16.在△ABC中,,则________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.定理:若函数的图象关于直线对称,且方程有个根,则这个根之和为.利用上述定理,求解下列问题:(1)已知函数,,设函数的图象关于直线对称,求的值及方程的所有根之和;(2)若关于的方程在实数集上有唯一的解,求的值.18.已知数列是以为首项,为公比的等比数列,(1)求数列的通项公式;(2)若,求数列的前项和.19.已知数列是各项均为正数的等比数列,且,.(1)求数列的通项公式;(2)为数列的前n项和,,求数列的前n项和.20.如图,已知四棱锥的侧棱底面,且底面是直角梯形,,,,,,点在棱上,且.(1)证明:平面;(2)求三棱锥的体积.21.已知是等差数列,满足,,且数列的前n项和.(1)求数列和的通项公式;(2)令,数列的前n项和为,求证:.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】

利用正弦定理得到答案.【详解】故答案为B【点睛】本题考查了正弦定理,意在考查学生的计算能力.2、D【解析】

由题意可得中间部分的为20个面包,设最小的一份为,公差为,可得到和的方程,即可求解.【详解】由题意可得中间的那份为20个面包,设最小的一份为,公差为,由题意可得,解得,故选D.【点睛】本题主要考查了等差数列的通项公式及其应用,其中根据题意设最小的一份为,公差为,列出关于和的方程是解答的关键,着重考查了推理与运算能力,属于基础题.3、A【解析】

根据棱柱的概念和四棱锥的基本特征,逐项进行判定,即可求解,得到答案.【详解】由题意,根据棱柱的定义:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱,侧棱垂直于底面的四棱柱叫做直四棱柱,由四棱柱的各个侧面都是平行四边形,所有的侧棱都平行且相等,①正确;②两对相对的侧面互相平行,不正确,如下图:左右侧面不平行.本题题目说的是“四棱柱”不一定是“直四棱柱”,所以,③④不正确,故选A.【点睛】本题主要考查了四棱柱的概念及其应用,其中解答中熟记棱柱的概念以及四棱锥的基本特征是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.4、D【解析】

先根据已知求出数列的通项,再求解.【详解】当时,,可得;当且时,,得,故数列为等比数列,首项为4,公比为2.所以所以.故选D【点睛】本题主要考查项和公式求数列通项,考查等比数列的通项的求法,意在考查学生对这些知识的理解掌握水平,属于基础题.5、D【解析】

利用函数y=Asin(ωx+φ)的图象变换规律,对称性和周期性,求得函数的最小正周期为,由此得出结论.【详解】解:将函数的图象向左平移个单位,可得的图象,根据所得到的函数图象关于轴对称,可得,即,.函数的最小正周期为,则函数的最小正周期不可能是,故选.【点睛】本题主要考查函数y=Asin(ωx+φ)的图象变换规律,对称性和周期性,属于基础题.6、C【解析】

先求均值,再根据标准差公式求标准差,最后比较大小.【详解】乙选手分数的平均数分别为所以标准差分别为因此s1<s2,选C.【点睛】本题考查标准差,考查基本求解能力.7、C【解析】

根据辅助角公式即可.【详解】由辅助角公式得所以,选C.【点睛】本题主要考查了辅助角公式的应用:,属于基础题.8、C【解析】

根据直线方程求出斜率即可得到倾斜角.【详解】由题:直线的斜率为,所以倾斜角为120°.故选:C【点睛】此题考查根据直线方程求倾斜角,需要熟练掌握直线倾斜角与斜率的关系,熟记常见特殊角的三角函数值.9、D【解析】

由平面向量基本定理及单位向量可得点在的外角平分线上,且点在的外角平分线上,,,在中,由正弦定理得得解.【详解】因为所以,因为方向为外角平分线方向,所以点在的外角平分线上,同理,点在的外角平分线上,,,在中,由正弦定理得,故选:.【点睛】本题考查了平面向量基本定理及单位向量,考查向量的应用,意在考查学生对这些知识的理解掌握水平.10、A【解析】

根据对立事件的定义判断.【详解】从装有4个红球和3个白球的袋内任取2个球,在A中,“至少有1个白球”与“都是红球”不能同时发生且必有一个事件会发生,是对立事件.在B中,“至少有1个白球”与“至少有1个红球”可以同时发生,不是互斥事件.在C中,“恰好有1个白球”与“恰好有2个白球”是互斥事件,但不是对立事件.在D中,“至少有1个白球”与“都是白球”不是互斥事件.故选:A.二、填空题:本大题共6小题,每小题5分,共30分。11、(答案不唯一)【解析】

确定圆心到直线的距离,即可求直线的方程.【详解】由题意得圆心坐标,半径,,∴圆心到直线的距离为,∴满足条件的一条直线的方程为.故答案为:(答案不唯一).【点睛】本题考查直线和圆的方程的应用,考查学生的计算能力,属于中档题.12、1【解析】

设,在扇形中,利用扇形的面积公式可求,根据已知,在扇形中,利用扇形的面积公式即可计算得解.【详解】解:设,扇形的面积为1,即:,解得:,为的中点,,在扇形中,.故答案为:1.【点睛】本题主要考查了扇形的面积公式的应用,考查了数形结合思想和转化思想,属于基础题.13、4【解析】

根据等比数列的等积求解即可.【详解】因为,故.又,故.故答案为:4【点睛】本题主要考查了等比数列等积性的运用,属于基础题.14、【解析】

先根据以及余弦定理计算出的值,再由面积公式即可求解出的面积.【详解】因为,所以,所以,所以.故答案为:.【点睛】本题考查解三角形中利用余弦定理求角以及面积公式的运用,难度较易.三角形中,已知两边的乘积和第三边所对的角即可利用面积公式求解出三角形面积.15、【解析】

利用空间直角坐标系中,关于原点对称的点的坐标特征解答即可.【详解】在空间直角坐标系中,关于原点对称的点的坐标对应互为相反数,所以点关于原点的对称点的坐标为.故答案为:【点睛】本题主要考查空间直角坐标系中对称点的特点,意在考查学生对该知识的理解掌握水平,属于基础题.16、【解析】

因为所以注意到:故.故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),;(2).【解析】

(1)根据定义域和对称性即可得出的值,求出的解的个数,利用定理得出所有根的和;(2)令,则为偶函数,于是的唯一零点为,于是,即可解出的值.【详解】解:(1)在上的图象关于直线对称,,令得,,即,.在上有7个零点,方程的所以根之和为.(2)令,则,是偶函数,的图象关于轴对称,即关于直线对称,只有1解,的唯一解为,即,,解得.【点睛】本题考查了函数零点与函数图象对称性的关系,属于基础题.18、(1);(2)【解析】

(1)按等比数列的概念直接求解即可;(2)先求出的表达式,再利用裂项相消法即可求得数列的前项和.【详解】(1)由等比数列通项公式得:(2)由(1)可得:【点睛】本题主要考查数列的通项公式问题及利用裂项相消法求和的问题,属常规考题.19、(1),n∈N+;(2)【解析】

(1)设公比为q,q>0,运用等比数列的通项公式,解方程即可得到所求;(2),再由数列的裂项相消求和,计算可得所求和.【详解】(1)数列是各项均为正数的等比数列,设公比为q,q>0,,.即,,解得,可得,n∈N+;(2),前n项和,由(1)可得a1=2,,即有.【点睛】本题考查数列的通项和求和,数列求和的常用方法有:分组求和,错位相减求和,倒序相加求和等,本题解题关键是裂项的形式,本题属于中等题.20、(1)见证明;(2)4【解析】

(1)取的三等分点,使,证四边形为平行四边形,运用线面平行判定定理证明.(2)三棱锥的体积可以用求出结果.【详解】(1)证明:取的三等分点,使,连接,.因为,,所以,.因为,,所以,,所以四边形为平行四边形,所以,因为平面,平面,所以平面.(2)解:因为,,所以的面积为,因为底面,所以三棱锥的高为,所以三棱锥的体积为.因为,所以三棱锥的高为,所以三棱锥的体积为

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论