兴义市第八中学2026届数学高一下期末复习检测模拟试题含解析_第1页
兴义市第八中学2026届数学高一下期末复习检测模拟试题含解析_第2页
兴义市第八中学2026届数学高一下期末复习检测模拟试题含解析_第3页
兴义市第八中学2026届数学高一下期末复习检测模拟试题含解析_第4页
兴义市第八中学2026届数学高一下期末复习检测模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

兴义市第八中学2026届数学高一下期末复习检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.关于的不等式的解集是,则关于的不等式的解集是()A. B.C. D.2.从集合中随机抽取一个数,从集合中随机抽取一个数,则向量与向量垂直的概率为()A. B. C. D.3.等差数列的前项和为,若,且,则()A.10 B.7 C.12 D.34.袋中共有6个除了颜色外完全相同的球,其中有1个红球,2个白球和3个黑球,从袋中任取两球,两球颜色为一白一黑的概率等于()A. B. C. D.5.已知非零向量与的夹角为,且,则()A.1 B.2 C. D.6.若角的终边与单位圆交于点,则()A. B. C. D.不存在7.已知某几何体的三视图如图所示,则该几何体的体积为A. B. C. D.8.赵爽是三国时期吴国的数学家,他创制了一幅“勾股圆方图”,也称“赵爽弦图”,如图,若在大正方形内随机取-点,这一点落在小正方形内的概率为,则勾与股的比为()A. B. C. D.9.已知中,,,,则BC边上的中线AM的长度为()A. B. C. D.10.在集合且中任取一个元素,所取元素x恰好满足方程的概率是()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若,则__________.12.已知为所在平面内一点,且,则_____13.某球的体积与表面积的数值相等,则球的半径是14.方程的解为______.15.已知数列满足:,,则_____.16.如图,在水平放置的边长为1的正方形中随机撤1000粒豆子,有400粒落到心形阴影部分上,据此估计心形阴影部分的面积为_________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在等差数列中,,且前7项和.(1)求数列的通项公式;(2)令,求数列的前项和.18.关于的不等式的解集为.(1)求实数的值;(2)若,求的值.19.已知圆关于直线对称,半径为,且圆心在第一象限.(Ⅰ)求圆的方程;(Ⅱ)若直线与圆相交于不同两点、,且,求实数的值.20.在中,内角、、的对边分别为、、,且.(1)求角的大小;(2)若,求的最大值及相应的角的余弦值.21.设数列的前项和为,满足,且,数列满足,对任意的,且成等比数列,其中.(1)求数列的通项公式(2)记,证明:当且时,

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】关于的不等式,即的解集是,∴不等式,可化为,解得,∴所求不等式的解集是,故选C.2、B【解析】

通过向量垂直的条件即可判断基本事件的个数,从而求得概率.【详解】基本事件总数为,当时,,满足的基本事件有,,,共3个,故所求概率为,故选B.【点睛】本题主要考查古典概型,计算满足条件的基本事件个数是解题的关键,意在考查学生的分析能力.3、C【解析】

由等差数列的前项和公式解得,由,得,由此能求出的值。【详解】解:差数列的前n项和为,,,解得,解得,故选:C。【点睛】本题考查等差数列的性质等基础知识,考查运算求解能力,是基础题.4、B【解析】

试题分析:由题意.故选B.5、B【解析】

根据条件可求出,从而对两边平方即可得出,解出即可.【详解】向量与的夹角为,且;;;;或0(舍去);.故选:.【点睛】本题主要考查了向量数量积的定义及数量积的运算公式,属于中档题.6、B【解析】

由三角函数的定义可得:,得解.【详解】解:在单位圆中,,故选B.【点睛】本题考查了三角函数的定义,属基础题.7、A【解析】

根据三视图可知几何体为三棱锥,根据棱锥体积公式求得结果.【详解】由三视图可知,几何体为三棱锥三棱锥体积为:本题正确选项:【点睛】本题考查棱锥体积的求解,关键是能够通过三视图确定几何体为三棱锥,且通过三视图确定三棱锥的底面和高.8、B【解析】

分别求解出小正方形和大正方形的面积,可知面积比为,从而构造方程可求得结果.【详解】由图形可知,小正方形边长为小正方形面积为:,又大正方形面积为:,即:解得:本题正确选项:【点睛】本题考查几何概型中的面积型的应用,关键是能够利用概率构造出关于所求量的方程.9、A【解析】

利用平行四边形对角线的平方和等于四条边的平方和,求的长.【详解】延长至,使,连接、,如图所示;由题意知四边形是平行四边形,且满足,即,解得,所以边上的中线的长度为.故选:A.【点睛】本题考查平行四边形对角线的平方和等于四条边的平方和应用问题,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力.10、B【解析】

写出集合中的元素,分别判断是否满足即可得解.【详解】集合且的元素,,,,,,.基本事件总数为,满足方程的基本事件数为.故所求概率.故选:B.【点睛】本题考查了古典概型概率的求解,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、;【解析】

把分子的1换成,然后弦化切,代入计算.【详解】.故答案为-1.【点睛】本题考查三角函数的化简求值.解题关键是“1”的代换,即,然后弦化切.12、【解析】

将向量进行等量代换,然后做出对应图形,利用平面向量基本定理进行表示即可.【详解】解:设,则根据题意可得,,如图所示,作,垂足分别为,则又,,故答案为.【点睛】本题考查了平面向量基本定理及其意义,两个向量的加减法及其几何意义,属于中档题.13、3【解析】试题分析:,解得.考点:球的体积和表面积14、或【解析】

由指数函数的性质得,由此能求出结果.【详解】方程,,或,解得或.故答案为或.【点睛】本题考查指数方程的解的求法,是基础题,解题时要认真审题,注意指数函数的性质的合理运用.15、【解析】

从开始,直接代入公式计算,可得的值.【详解】解:由题意得:,,,,故答案为:.【点睛】本题主要考查数列的递推公式及数列的性质,相对简单.16、0.4【解析】

根据几何概型的计算,反求阴影部分的面积即可.【详解】设阴影部分的面积为,根据几何概型的概率计算公式:,解得.故答案为:.【点睛】本题考查几何概型的概率计算公式,属基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)Sn=•3n+1+【解析】

(1)等差数列{an}的公差设为d,运用等差数列的通项公式和求和公式,计算可得所求通项公式;(2)求得bn=2n•3n,由数列的错位相减法求和即可.【详解】(1)等差数列{an}的公差设为d,a3=6,且前7项和T7=1.可得a1+2d=6,7a1+21d=1,解得a1=2,d=2,则an=2n;(2)bn=an•3n=2n•3n,前n项和Sn=2(1•3+2•32+3•33+…+n•3n),3Sn=2(1•32+2•33+3•34+…+n•3n+1),相减可得﹣2Sn=2(3+32+33+…+3n﹣n•3n+1)=2•(﹣n•3n+1),化简可得Sn=•3n+1+.【点睛】本题考查等差数列和等比数列的通项公式和求和公式的运用,考查数列的错位相减法求和,以及化简运算能力,属于中档题.18、(1);(2).【解析】

(1)由行列式的运算法则,得原不等式即,而不等式的解集为,采用比较系数法,即可得到实数的值;(2)把代入,求得,进一步得到,再由两角差的正切公式即可求解.【详解】(1)原不等式等价于,由题意得不等式的解集为,故是方程的两个根,代入解得,所以实数的值为.(2)由,得,即.,【点睛】本题考查了行列式的运算法则、由一元二次不等式的解集求参数值、二倍角的正切公式以及两角差的正切公式,需熟记公式,属于基础题.19、(Ⅰ);(Ⅱ).【解析】

(Ⅰ)由题得和,解方程即得圆的方程;(Ⅱ)取的中点,则,化简得,即得m的值.【详解】(Ⅰ)由,得圆的圆心为,圆关于直线对称,①.圆的半径为,②又圆心在第一象限,,,由①②解得,,故圆的方程为.(Ⅱ)取的中点,则,,,即,又,解得.【点睛】本题主要考查圆的方程的求法,考查直线和圆的位置关系和向量的运算,意在考查学生对这些知识的理解掌握水平和分析推理能力.20、(1)(2)的最大值为,此时【解析】

(1)由正弦定理边角互化思想结合内角和定理、诱导公式可得出的值,结合角的取值范围可得出角的大小;(2)由正弦定理得出,,然后利用三角恒等变换思想将转化为关于角的三角函数,可得出的值,并求出的值.【详解】(1)由正弦定理得,即,从而有,即,由得,因为,所以;(2)由正弦定理可知,,则有,,,其中,因为,所以,所以当时,取得最大值,此时,所以,的最大值为,此时.【点睛】本题考查正弦定理边角互化思想的应用,考查内角和定理、诱导公式,以及三角形中最值的求解,求解时常利用正弦定理将边转化为角的三角函数来求解,解题时要充分利用三角恒等变换思想将三角函数解析式化简,考查运算求解能力,属于中等题.21、(1).;.(2)证明见解析.【解析】

(1)当时,由,两式相减得,用等差中

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论