版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
兰州市重点中学2026届高一数学第二学期期末质量检测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在直角坐标系中,已知点,则的面积为()A. B.4 C. D.82.已知点,,直线的方程为,且与线段相交,则直线的斜率的取值范围为()A. B. C. D.3.的内角的对边分别为,边上的中线长为,则面积的最大值为()A. B. C. D.4.甲、乙两队准备进行一场篮球赛,根据以往的经验甲队获胜的概率是,两队打平的概率是,则这次比赛乙队不输的概率是()A.- B. C. D.5.将函数的图象上各点沿轴向右平移个单位长度,所得函数图象的一个对称中心为()A. B. C. D.6.若角α的终边经过点P(-1,1A.sinα=1C.cosα=27.记为等差数列的前n项和.若,,则等差数列的公差为()A.1 B.2 C.4 D.88.经统计某射击运动员随机命中的概率可视为,为估计该运动员射击4次恰好命中3次的概率,现采用随机模拟的方法,先由计算机产生0到9之间取整数的随机数,用0,1,2没有击中,用3,4,5,6,7,8,9表示击中,以4个随机数为一组,代表射击4次的结果,经随机模拟产生了20组随机数:7525,0293,7140,9857,0347,4373,8638,7815,1417,55500371,6233,2616,8045,6011,3661,9597,7424,7610,4281根据以上数据,则可估计该运动员射击4次恰好命中3次的概率为()A. B. C. D.9.若正实数满足,则的最小值为A. B. C. D.10.关于x的不等式的解集中,恰有3个整数,则a的取值范围是()A. B. C. D.(4,5)二、填空题:本大题共6小题,每小题5分,共30分。11.若关于的不等式的解集为,则__________12.一组数据2,4,5,,7,9的众数是2,则这组数据的中位数是_________.13.已知圆锥的轴截面是边长为2的正三角形,则这个圆锥的表面积等于______.14.与30°角终边相同的角_____________.15.已知数列,其前项和为,若,则在,,…,中,满足的的个数为______.16.在平面直角坐标系中,从五个点:中任取三个,这三点能构成三角形的概率是_______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知圆,直线.圆与轴交于两点,是圆上不同于的一动点,所在直线分别与交于.(1)当时,求以为直径的圆的方程;(2)证明:以为直径的圆截轴所得弦长为定值.18.为了评估A,B两家快递公司的服务质量,从两家公司的客户中各随机抽取100名客户作为样本,进行服务质量满意度调查,将A,B两公司的调查得分分别绘制成频率分布表和频率分布直方图.规定分以下为对该公司服务质量不满意.分组频数频率0.4合计(Ⅰ)求样本中对B公司的服务质量不满意的客户人数;(Ⅱ)现从样本对A,B两个公司服务质量不满意的客户中,随机抽取2名进行走访,求这两名客户都来自于B公司的概率;(Ⅲ)根据样本数据,试对两个公司的服务质量进行评价,并阐述理由.19.在等差数列中,,且前7项和.(1)求数列的通项公式;(2)令,求数列的前项和.20.已知椭圆(常数),点是上的动点,是右顶点,定点的坐标为.⑴若与重合,求的焦点坐标;⑵若,求的最大值与最小值;⑶若的最小值为,求的取值范围.21.如图,是菱形,对角线与的交点为,四边形为梯形,,.(1)若,求证:平面;(2)求证:平面平面;(3)若,求直线与平面所成角的余弦值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】
求出直线AB的方程及点C到直线AB的距离d,再求出,代入即可得解.【详解】,即,点到直线的距离,,的面积为:.故选:B【点睛】本题考查直线的点斜式方程,点到直线的距离与两点之间的距离公式,属于基础题.2、A【解析】
直线过定点,利用直线的斜率公式分别计算出直线,和的斜率,根据斜率的单调性即可求斜率的取值范围.【详解】解:直线整理为即可知道直线过定点,作出直线和点对应的图象如图:,,,,,要使直线与线段相交,则直线的斜率满足或,或即直线的斜率的取值范围是,故选.【点睛】本题考查直线斜率的求法,利用数形结合确定直线斜率的取值范围,属于基础题.3、D【解析】
作出图形,通过和余弦定理可计算出,于是利用均值不等式即可得到答案.【详解】根据题意可知,而,同理,而,于是,即,又因为,代入解得.过D作DE垂直于AB于点E,因此E为中点,故,而,故面积最大值为4,答案为D.【点睛】本题主要考查解三角形与基本不等式的相关综合,表示出三角形面积及使用均值不等式是解决本题的关键,意在考查学生的转化能力,计算能力,难度较大.4、C【解析】
因为“甲队获胜”与“乙队不输”是对立事件,对立事件的概率之和为1,进而即可求出结果.【详解】由题意,“甲队获胜”与“乙队不输”是对立事件,因为甲队获胜的概率是,所以,这次比赛乙队不输的概率是.故选C【点睛】本题主要考查对立事件的概率问题,熟记对立事件的性质即可,属于常考题型.5、A【解析】
先求得图象变换后的解析式,再根据正弦函数对称中心,求出正确选项.【详解】向右平移的单位长度,得到,由解得,当时,对称中心为,故选A.【点睛】本小题主要考查三角函数图象变换,考查三角函数对称中心的求法,属于基础题.6、B【解析】
利用三角函数的定义可得α的三个三角函数值后可得正确的选项.【详解】因为角α的终边经过点P-1,1,故r=OP=所以sinα=【点睛】本题考查三角函数的定义,属于基础题.7、B【解析】
利用等差数列的前n项和公式、通项公式列出方程组,能求出等差数列{an}的公差.【详解】∵为等差数列的前n项和,,,∴,解得d=2,a1=5,∴等差数列的公差为2.故选:B.【点睛】本题考查等差数列的公差,此类问题根据题意设公差和首项为d、a1,列出方程组解出即可,属于基础题.8、A【解析】
根据20组随机数可知该运动员射击4次恰好命中3次的随机数共8组,据此可求出对应的概率.【详解】由题意,该运动员射击4次恰好命中3次的随机数为:7525,0347,7815,5550,6233,8045,3661,7424,共8组,则该运动员射击4次恰好命中3次的概率为.故答案为A.【点睛】本题考查了利用随机模拟数表法求概率,考查了学生对基础知识的掌握.9、D【解析】
将变成,可得,展开后利用基本不等式求解即可.【详解】,,,,当且仅当,取等号,故选D.【点睛】本题主要考查利用基本不等式求最值,属于中档题.利用基本不等式求最值时,一定要正确理解和掌握“一正,二定,三相等”的内涵:一正是,首先要判断参数是否为正;二定是,其次要看和或积是否为定值(和定积最大,积定和最小);三相等是,最后一定要验证等号能否成立(主要注意两点,一是相等时参数是否在定义域内,二是多次用或时等号能否同时成立).10、A【解析】
不等式等价转化为,当时,得,当时,得,由此根据解集中恰有3个整数解,能求出的取值范围。【详解】关于的不等式,不等式可变形为,当时,得,此时解集中的整数为2,3,4,则;当时,得,,此时解集中的整数为-2,-1,0,则故a的取值范围是,选:A。【点睛】本题难点在于分类讨论解含参的二次不等式,由于二次不等式对应的二次方程的根大小不确定,所以要对和1的大小进行分类讨论。其次在观察的范围的时候要注意范围的端点能否取到,防止选择错误的B选项。二、填空题:本大题共6小题,每小题5分,共30分。11、1【解析】
根据二次不等式和二次方程的关系,得到是方程的两根,由根与系数的关系得到的值.【详解】因为关于的不等式的解集为所以是方程的两根,,由根与系数的关系得,解得【点睛】本题考查一元二次不等式和一元二次方程之间的关系,根与系数之间的关系,属于简单题.12、【解析】
根据众数的定义求出的值,再根据中位数的定义进行求解即可.【详解】因为一组数据2,4,5,,7,9的众数是2,所以,这一组数据从小到大排列为:2,2,4,5,7,9,因此这一组数据的中位数为:.故答案为:【点睛】本题考查了众数和中位数的定义,属于基础题.13、【解析】
根据圆锥轴截面的定义结合正三角形的性质,可得圆锥底面半径长和高的大小,由此结合圆锥的表面积公式,能求出结果.【详解】∵圆锥的轴截面是正三角形,边长等于2∴圆锥的高,底面半径.∴这个圆锥的表面积:.故答案为.【点睛】本题给出圆锥轴截面的形状,求圆锥的表面积,着重考查了等边三角形的性质和圆锥的轴截面等基础知识,考查运算求解能力,是基础题.14、【解析】
根据终边相同的角的定义可得答案.【详解】与30°角终边相同的角,故答案为:【点睛】本题考查了终边相同的角的定义,属于基础题.15、1【解析】
运用周期公式,求得,运用诱导公式及三角恒等变换,化简可得,即可得到满足条件的的值.【详解】解:,可得周期,,则满足的的个数为.故答案为:1.【点睛】本题考查三角函数的周期性及应用,考查三角函数的化简和求值,以及运算能力,属于中档题.16、【解析】
分别算出两点间的距离,共有种,构成三角形的条件为任意两边之和大于第三边,所以在这10种中找出满足条件的即可.【详解】由两点之间的距离公式,得:,,,任取三点有:,共10种,能构成三角形的有:,共6种,所求概率为:.【点睛】构成三角形必须满足任意两边之和大于第三边,则n个点共有个线段,找出满足条件的即可,属于中等难度题目.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)证明见解析.【解析】
(1)讨论点的位置,根据直线的方程,直线的方程分别与直线方程联立,得出的坐标,进而得出圆心坐标以及半径,即可得出该圆的方程;(2)讨论点的位置,根据直角三角形的边角关系得出的坐标,进而得出圆心坐标以及半径,再由圆的弦长公式化简即可证明.【详解】(1)由圆的方程可知,①当点在第一象限时,如下图所示当时,,所以直线的方程为由,解得直线的方程为由,解得则的中点坐标为,所以以为直径的圆的方程为②当点在第四象限时,如下图所示当时,,所以直线的方程为由,解得直线的方程为由,解得则的中点坐标为,所以以为直径的圆的方程为综上,以为直径的圆的方程为(2)①当点在圆上半圆运动时,取直线交轴于点,如下图所示设,则则以为直径的圆的圆心坐标为,半径所以以为直径的圆截轴所得弦长为②当点在圆下半圆运动时,取直线交轴于点,如下图所示设,则则以为直径的圆的圆心坐标为,半径所以以为直径的圆截轴所得弦长为综上,以为直径的圆截轴所得弦长为定值.【点睛】本题主要考查了求圆的方程以及圆的弦长公式的应用,属于中档题.18、(Ⅰ)3人;(Ⅱ)0.3;(Ⅲ)见解析【解析】
(Ⅰ)对B公司的服务质量不满意的频率为,即概率为0.03,易求解.(Ⅱ)共有5名客服不满意,将每种情况都列出来即可算出全来自于B公司的概率.(Ⅲ)可通过频率对比,服务质量得分的众数,服务质量得70分(或80分)以上的频率几个方面进行对比.【详解】(Ⅰ)样本中对B公司的服务质量不满意的频率为,所以样本中对B公司的服务质量不满意的客户有人.(Ⅱ)设“这两名客户都来自于B公司”为事件M.对A公司的服务质量不满意的客户有2人,分别记为,;对B公司的服务质量不满意的客户有3人,分别记为,,.现从这5名客户中随机抽取2名客户,不同的抽取的方法有,,,,,,,,,共10个;其中都来自于B公司的抽取方法有,,共3个,所以.所以这两名客户都来自于B公司的概率为.(Ⅲ)答案一:由样本数据可以估计客户对A公司的服务质量不满意的频率比对B公司服务质量不满意的频率小,由此推断A公司的服务质量比B公司的服务质量好.答案二:由样本数据可以估计A公司的服务质量得分的众数与B公司服务质量得分的众数相同,由此推断A公司的服务质量与B公司的服务质量相同.答案三:由样本数据可以估计A公司的服务质量得70分(或80分)以上的频率比B公司得70分(或80分)以上的频率小,由此推断A公司的服务质量比B公司的服务质量差.答案四:由样本数据可以估计A公司的服务质量得分的平均分比B公司服务质量得分的平均分低,由此推断A公司的服务质量比B公司的服务质量差.【点睛】此题考查概率,关键理解清楚频率分布表和频率分布直方图表示的含有,简单数据可通过列表法求概率或者可以组合数求解,属于较易题目.19、(1);(2)Sn=•3n+1+【解析】
(1)等差数列{an}的公差设为d,运用等差数列的通项公式和求和公式,计算可得所求通项公式;(2)求得bn=2n•3n,由数列的错位相减法求和即可.【详解】(1)等差数列{an}的公差设为d,a3=6,且前7项和T7=1.可得a1+2d=6,7a1+21d
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 宝马销售上岗考核制度
- 学校食品浪费考核制度
- 大学导师助理考核制度
- 大学社团办考核制度
- 乡镇畜牧站饲料监管员招聘面试模拟题及答案
- 北海康养职业学院教师招聘考试真题及答案
- 陕西省西安市西安电子科技大附中2026届高一数学第二学期期末统考模拟试题含解析
- 2026届甘肃省武威市高一生物第二学期期末学业水平测试模拟试题含解析
- 专业技术人员公需科目培训考试及答案力
- 文书助理考试试题及答案
- 2025年高考(广西卷)生物试题(学生版+解析版)
- 地形课件-八年级地理上学期人教版
- uom无人机考试试题及答案
- 2025年四川单招试题及答案
- 婚前教育手册
- 2024家用电视机定制合同2篇
- GB/T 20832-2007金属材料试样轴线相对于产品织构的标识
评论
0/150
提交评论