北京市石景山区2026届高一数学第二学期期末检测模拟试题含解析_第1页
北京市石景山区2026届高一数学第二学期期末检测模拟试题含解析_第2页
北京市石景山区2026届高一数学第二学期期末检测模拟试题含解析_第3页
北京市石景山区2026届高一数学第二学期期末检测模拟试题含解析_第4页
北京市石景山区2026届高一数学第二学期期末检测模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

北京市石景山区2026届高一数学第二学期期末检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知,则=()A. B. C. D.2.在中,,,其面积为,则等于()A. B. C. D.3.在投资生产产品时,每生产需要资金200万,需场地,可获得300万;投资生产产品时,每生产需要资金300万,需场地,可获得200万,现某单位可使用资金1400万,场地,则投资这两种产品,最大可获利()A.1350万 B.1475万 C.1800万 D.2100万4.某校高二理(1)班学习兴趣小组为了调查学生喜欢数学课的人数比例,设计了如下调查方法:(1)在本校中随机抽取100名学生,并编号1,2,3,…,100;(2)在箱内放置了两个黄球和三个红球,让抽取到的100名学生分别从箱中随机摸出一球,记住其颜色并放回;(3)请下列两类学生站出来,一是摸到黄球且编号数为奇数的学生,二是摸到红球且不喜欢数学课的学生。若共有32名学生站出来,那么请用统计的知识估计该校学生中喜欢数学课的人数比例大约是()A.80% B.85% C.90% D.92%5.在中,,点P是直线BN上一点,若,则实数m的值是()A.2 B. C. D.6.某高校进行自主招生,先从报名者中筛选出400人参加笔试,再按笔试成绩择优选出100人参加面试.现随机抽取了24名笔试者的成绩,统计结果如下表所示.分数段[60,65)[65,70)[70,75)[75,80)[80,85)[85,90]人数234951据此估计允许参加面试的分数线大约是()A.90 B.85C.80 D.757.已知函数fxA.fx的最小正周期为π,最大值为B.fx的最小正周期为π,最大值为C.fx的最小正周期为2πD.fx的最小正周期为2π8.如图所示的图形是弧三角形,又叫莱洛三角形,它是分别以等边三角形ABC的三个顶点为圆心,以边长为半径画弧得到的封闭图形.在此图形内随机取一点,则此点取自等边三角形内的概率是()A.32π-3 B.34π-239.若圆上有且仅有两个点到直线的距离等于,则的取值范围是()A. B. C. D.10.如图,某人在点处测得某塔在南偏西的方向上,塔顶仰角为,此人沿正南方向前进30米到达处,测得塔顶的仰角为,则塔高为()A.20米 B.15米 C.12米 D.10米二、填空题:本大题共6小题,每小题5分,共30分。11.已知三棱锥外接球的表面积为,面,则该三棱锥体积的最大值为____。12.已知角的终边经过点,若,则______.13.已知函数(,)的部分图像如图所示,则函数解析式为_______.14.已知等差数列的前项和为,若,则_____15.已知函数f(n)=n2cos(nπ),且an=f(n)+f(n+1),则a1+a2+a3+…+a100=_______16.适合条件的角的取值范围是______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知集合,集合.(1)求;(2)若不等式的解集为,求不等式的解集.18.在凸四边形中,.(1)若,,,求的大小.(2)若,且,求四边形的面积.19.如图所示,一个半圆和长方形组成的铁皮,长方形的边为半圆的直径,为半圆的圆心,,,现要将此铁皮剪出一个三角形,使得,.(1)设,求三角形铁皮的面积;(2)求剪下的铁皮三角形的面积的最大值.20.已知圆内有一点,过点作直线交圆于两点.(1)当直线经过圆心时,求直线的方程;(2)当弦被点平分时,写出直线的方程.21.在直角坐标系中,以坐标原点为圆心的圆与直线相切。求圆的方程;若圆上有两点关于直线对称,且,求直线的方程;

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】由得:,所以,故选D.2、A【解析】

先由三角形面积公式求出,再由余弦定理得到,再由正弦定理,即可得出结果.【详解】因为在中,,,其面积为,所以,因此,所以,所以,由正弦定理可得:,所以.故选A【点睛】本题主要考查解三角形,熟记正弦定理和余弦定理即可,属于基础题型.3、B【解析】

设生产产品x百吨,生产产品百吨,利润为百万元,先分析题意,找出相关量之间的不等关系,即满足的约束条件,由约束条件画出可行域;要求应作怎样的组合投资,可使获利最大,即求可行域中的最优解,在线性规划的解答题中建议使用直线平移法求出最优解,即将目标函数看成是一条直线,分析目标函数与直线截距的关系,进而求出最优解.【详解】设生产产品百吨,生产产品百吨,利润为百万元则约束条件为:,作出不等式组所表示的平面区域:目标函数为.由解得.使目标函数为化为要使得最大,即需要直线在轴的截距最大即可.由图可知当直线过点时截距最大.此时应作生产产品3.25百吨,生产产品2.5百吨的组合投资,可使获利最大.

故选:B.【点睛】在解决线性规划的应用题时,其步骤为:①分析题目中相关量的关系,列出不等式组,即约束条件⇒②由约束条件画出可行域⇒③分析目标函数Z与直线截距之间的关系⇒④使用平移直线法求出最优解⇒⑤还原到现实问题中.属于中档题.4、A【解析】

先分别计算号数为奇数的概率、摸到黄球的概率、摸到红球的概率,从而可得摸到黄球且号数为奇数的学生,进而可得摸到红球且不喜欢数学课的学生人数,由此可得估计该校学生中喜欢数学课的人数比例.【详解】解:由题意,号数为奇数的概率为0.5,摸到黄球的概率为,摸到红球的概率为那么按概率计算摸到黄球且号数为奇数的学生有个共有32名学生站出来,则有12个摸到红球且不喜欢数学课的学生,不喜欢数学课的学生有:,喜欢数学课的有80个,估计该校学生中喜欢数学课的人数比例大约是:.故选:.【点睛】本题考查概率的求法,考查古典概型等基础知识,考查运算求解能力,是基础题.5、B【解析】

根据向量的加减运算法则,通过,把用和表示出来,即可得到的值.【详解】在中,,点是直线上一点,所以,又三点共线,所以,即.故选:B.【点睛】本题考查实数值的求法,解题时要认真审题,注意平面向量加法法则的合理运用,属于基础题.6、C【解析】

根据题意可从样本中数据的频率考虑,即按成绩择优选择频率为的,根据题意得到所选的范围后再求出对应的分数.【详解】由题意得,参加面试的频率为,结合表中的数据可得,样本中[80,90]的频率为,由样本估计总体知,分数线大约为80分.故选C.【点睛】本题考查统计图表的应用,解题的关键是理解题意,同时还要正确掌握统计中的常用公式,属于基础题.7、B【解析】

首先利用余弦的倍角公式,对函数解析式进行化简,将解析式化简为fx【详解】根据题意有fx所以函数fx的最小正周期为T=且最大值为fx【点睛】该题考查的是有关化简三角函数解析式,并且通过余弦型函数的相关性质得到函数的性质,在解题的过程中,要注意应用余弦倍角公式将式子降次升角,得到最简结果.8、D【解析】

求出以A为圆心,以边长为半径,圆心角为∠BAC的扇形的面积,根据图形的性质,可知它的3倍减去2倍的等边三角形ABC【详解】设等边三角形ABC的边长为a,设以A为圆心,以边长为半径,圆心角为∠BAC的扇形的面积为S1,则S1=莱洛三角形面积为S,则S=3S在此图形内随机取一点,则此点取自等边三角形内的概率为P,P=S【点睛】本题考查了几何概型.解决本题的关键是正确求出莱洛三角形的面积.考查了运算能力.9、B【解析】

先求出圆心到直线的距离,然后结合图象,即可得到本题答案.【详解】由题意可得,圆心到直线的距离为,故由图可知,当时,圆上有且仅有一个点到直线的距离等于;当时,圆上有且仅有三个点到直线的距离等于;当则的取值范围为时,圆上有且仅有两个点到直线的距离等于.故选:B【点睛】本题主要考查直线与圆的综合问题,数学结合是解决本题的关键.10、B【解析】

设塔底为,塔高为,根据已知条件求得以及角,利用余弦定理列方程,解方程求得塔高的值.【详解】设塔底为,塔高为,故,由于,所以在三角形中,由余弦定理得,解得米.故选B.【点睛】本小题主要考查利用余弦定理解三角形,考查空间想象能力,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

根据球的表面积计算出球的半径.利用勾股定理计算出三角形外接圆的半径,根据正弦定理求得的长,再根据圆内三角形面积的最大值求得三角形面积的最大值,由此求得三棱锥体积的最大值.【详解】画出图像如下图所示,其中是外接球的球心,是底面三角形的外心,.设球的半径为,三角形外接圆的半径为,则,故在中,.在三角形中,由正弦定理得.故三角形为等边三角形,其高为.由于为定值,而三角形的高等于时,三角形的面积取得最大值,由于为定值,故三棱锥的体积最大值为.【点睛】本小题主要考查外接球有关计算,考查三棱锥体积的最大值的计算,属于中档题.12、【解析】

利用三角函数的定义可求.【详解】由三角函数的定义可得,故.故答案为:.【点睛】本题考查三角函数的定义,注意根据正弦的定义构建关于的方程,本题属于基础题.13、y=sin(2x+).【解析】

由函数的图象的顶点坐标求出A,由周期求出ω,由五点法作图求出φ的值答案可求【详解】根据函数y=sin(ωx+φ)(ω>0,0<φ)的部分图象,可得A=1,•,∴ω=2,再结合五点法作图可得2•φ=π,∴φ,则函数解析式为y=sin(2x+)故答案为:y=sin(2x+).【点睛】本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,由函数的图象的顶点坐标求出A,由周期求出ω,由五点法作图求出φ的值难度中档.14、1.【解析】

利用等差数列前项和公式能求出的值.【详解】解:∵等差数列的前项和为,若,

故答案为:.【点睛】本题考查等差数列前项和的求法,考查等差数列的性质等基础知识,考查运算求解能力,是基础题.15、-1【解析】

分n为偶数和奇数求得数列的奇数项和偶数项均为等差数列,然后利用分组求和得答案.【详解】若n为偶数,则an=f(n)+f(n+1)=n2﹣(n+1)2=﹣(2n+1),偶数项为首项为a2=﹣5,公差为﹣4的等差数列;若n为奇数,则an=f(n)+f(n+1)=﹣n2+(n+1)2=2n+1,奇数项为首项为a1=3,公差为4的等差数列.∴a1+a2+a3+…+a1=(a1+a3+…+a99)+(a2+a4+…+a1)1.故答案为:1.【点睛】本题考查数列递推式,考查了等差关系的确定,训练了等差数列前n项和的求法,是中档题.16、【解析】

根据三角函数的符号法则,得,从而求出的取值范围.【详解】,的取值范围的解集为.故答案为:【点睛】本题主要考查了三角函数符号法则的应用问题,是基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】

(1)由一元二次不等式的解法分别求出集合,再求交集即可;(2)由待定系数法求得,再代入不等式,解不等式即可得解.【详解】解:(1)因为集合,集合,即;(2)由不等式的解集为,则不等式等价于,即,即,即不等式等价于,即,解得或,故不等式的解集为.【点睛】本题考查了集合的运算,重点考查了一元二次不等式的解法,属基础题.18、(1);(2)【解析】

(1)在中利用余弦定理可求得,从而可知,求得;在中利用正弦定理求得结果;(2)在中利用余弦定理和可表示出;在中利用余弦定理可得,从而构造出关于的方程,结合和为锐角可求得;根据化简求值可得到结果.【详解】(1)连接在中,,,由余弦定理得:,则在中,由正弦定理得:,解得:(2)连接在中,由余弦定理得:又在中,由余弦定理得:,即又为锐角,则四边形面积:【点睛】本题考查解三角形的相关知识,涉及到正弦定理、余弦定理解三角形、三角形面积公式的应用;关键是能够利用余弦定理构造出关于角的正余弦值的方程,结合同角三角函数的平方关系构造方程可求得三角函数值;易错点是忽略角的范围,造成求解错误.19、(1)三角形铁皮的面积为;(2)剪下的铁皮三角形的面积的最大值为.【解析】试题分析:(1)利用锐角三角函数求出和的长度,然后以为底边、以为高,利用三角形面积公式求出三角形的面积;(2)设,以锐角为自变量将和的长度表示出来,并利用面积公式求出三角形的面积的表达式,利用与之间的关系,令将三角形的面积的表达式表示为以为自变量的二次函数,利用二次函数的单调性求出三角形的面积的最大值,但是要注意自变量的取值范围作为新函数的定义域.试题解析:(1)由题意知,,,,即三角形铁皮的面积为;(2)设,则,,,,令,由于,所以,则有,所以,且,所以,故,而函数在区间上单调递增,故当时,取最大值,即,即剪下的铁皮三角形的面积的最大值为.考点:1.三角形的面积;2.三角函数的最值;3.二次函数的最值20、(1)(2)【解析】

(1)求得圆的圆心为,利用直线的点斜式方程,即可求解;(2)当弦被点平分时,,得此直线的斜率为,结合直线的点斜式方程,即可求解.【详解】(1)由题意得,圆的圆心为,因为直线过点,所

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论