版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
福建省师大附中2026届高一数学第二学期期末经典试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在△ABC中,,P是BN上的一点,若,则实数m的值为A.3 B.1 C. D.2.某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒,若一名行人来到该路口遇到红灯,则至少需要等待15秒才出现绿灯的概率为()A. B. C. D.3.已知直线:是圆的对称轴.过点作圆的一条切线,切点为,则()A.2 B. C.6 D.4.已知正数组成的等比数列的前8项的积是81,那么的最小值是()A. B. C.8 D.65.设且,的最小值为()A.10 B.9 C.8 D.6.若,,且,则与的夹角是()A. B. C. D.7.已知x,y为正实数,则()A.2lgx+lgy=2lgx+2lgy B.2lg(x+y)=2lgx•2lgyC.2lgx•lgy=2lgx+2lgy D.2lg(xy)=2lgx•2lgy8.已知的三个内角所对的边分别为.若,则该三角形的形状是()A.等边三角形 B.等腰三角形 C.等腰三角形或直角三角形 D.直角三角形9.已知一个扇形的圆心角为,半径为1.则它的弧长为()A. B. C. D.10.如图所示,已知两座灯塔A和B与海洋观察站C的距离都等于akm,灯塔A在观察站C的北偏东20°,灯塔B在观察站C的南偏东40°,则灯塔A与灯塔B的距离为()A.akm B.akmC.akm D.2akm二、填空题:本大题共6小题,每小题5分,共30分。11.在等差数列中,,,则的值为_______.12.的内角的对边分别为,,,若的面积为,则角_______.13.在上定义运算,则不等式的解集为_____.14.若是等比数列,,,且公比为整数,则______.15.已知两条直线,将圆及其内部划分成三个部分,则的取值范围是_______;若划分成的三个部分中有两部分的面积相等,则的取值有_______种可能.16.设a>0,角α的终边经过点P(﹣3a,4a),那么sinα+2cosα的值等于.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知△ABC的顶点A4,3,AB边上的高所在直线为x-y-3=0,D为AC中点,且BD所在直线方程为3x+y-7=0(1)求顶点B的坐标;(2)求BC边所在的直线方程。18.在平面直角坐标系中,已知点与两个定点,的距离之比为.(1)求点的坐标所满足的关系式;(2)求面积的最大值;(3)若恒成立,求实数的取值范围.19.已知平面向量,.(1)若与垂直,求;(2)若,求.20.已知圆,点,直线.(1)求与直线l垂直,且与圆C相切的直线方程;(2)在x轴上是否存在定点B(不同于点A),使得对于圆C上任一点P,为常数?若存在,试求这个常数值及所有满足条件的点B的坐标;若不存在,请说明理由.21.在相同条件下对自行车运动员甲、乙两人进行了6次测试,测得他们的最大速度(单位:)的数据如下:甲273830373531乙332938342836试判断选谁参加某项重大比赛更合适.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】分析:根据向量的加减运算法则,通过,把用和表示出来,可得的值.详解:如图:∵,,
则
又三点共线,故得.
故选C..点睛:本题考查实数值的求法,是基础题,解题时要认真审题,注意平面向量加法法则的合理运用.2、B【解析】试题分析:因为红灯持续时间为40秒,所以这名行人至少需要等待15秒才出现绿灯的概率为,故选B.【考点】几何概型【名师点睛】对于几何概型的概率公式中的“测度”要有正确的认识,它只与大小有关,而与形状和位置无关,在解题时,要掌握“测度”为长度、面积、体积、角度等常见的几何概型的求解方法.3、C【解析】试题分析:直线l过圆心,所以,所以切线长,选C.考点:切线长4、A【解析】
利用等比数列的通项公式和均值不等式可得结果.【详解】由由为正项数列,可知再由均值不等式可知所以(当且仅当时取等号)故选:A【点睛】本题主要考查等比数列的通项公式及均值不等式,属基础题.5、B【解析】
由配凑出符合基本不等式的形式,利用基本不等式即可求得结果.【详解】(当且仅当,即时取等号)的最小值为故选:【点睛】本题考查利用基本不等式求解和的最小值的问题,关键是能够灵活利用“”,配凑出符合基本不等式的形式.6、B【解析】
根据相互垂直的向量数量积为零,求出与的夹角.【详解】由题有,即,故,因为,所以.故选:B.【点睛】本题考查了向量的数量积运算,向量夹角的求解,属于基础题.7、D【解析】因为as+t=as•at,lg(xy)=lgx+lgy(x,y为正实数),所以2lg(xy)=2lgx+lgy=2lgx•2lgy,满足上述两个公式,故选D.8、B【解析】
利用三角形的内角关系及三角变换公式得到,从而得到,此三角形的形状可判断.【详解】因为,故,整理得到,所以,因,所以即,故为等腰三角形,故选B.【点睛】本题考查两角和、差的正弦,属于基础题,注意角的范围的讨论.9、C【解析】
直接利用扇形弧长公式求解即可得到结果.【详解】由扇形弧长公式得:本题正确选项:【点睛】本题考查扇形弧长公式的应用,属于基础题.10、B【解析】
先根据题意确定的值,再由余弦定理可直接求得的值.【详解】在中知∠ACB=120°,由余弦定理得AB2=AC2+BC2-2AC·BCcos120°=2a2-2a2×=3a2,∴AB=a.故选:B.【点睛】本题主要考查余弦定理的应用,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、.【解析】
设等差数列的公差为,根据题中条件建立、的方程组,求出、的值,即可求出的值.【详解】设等差数列的公差为,所以,解得,因此,,故答案为:.【点睛】本题考查等差数列的项的计算,常利用首项和公差建立方程组,结合通项公式以及求和公式进行计算,考查方程思想,属于基础题.12、【解析】
根据三角形面积公式和余弦定理可得,从而求得;由角的范围可确定角的取值.【详解】故答案为:【点睛】本题考查余弦定理和三角形面积公式的应用问题,关键是能够配凑出符合余弦定理的形式,进而得到所求角的三角函数值.13、【解析】
根据定义运算,把化简得,求出其解集即可.【详解】因为,所以,即,得,解得:故答案为:.【点睛】本题考查新定义,以及解一元二次不等式,考查运算的能力,属于基础题.14、512【解析】
由题设条件知和是方程的两个实数根,解方程并由公比q为整数,知,,由此能够求出公比,从而得到.【详解】是等比数列,
,,
,,
和是方程的两个实数根,
解方程,
得,,
公比q为整数,
,,
,解得,
.故答案为:512【点睛】本题考查等比数列的通项公式的求法,利用了等比数列下标和的性质,是基础题.解题时要认真审题,仔细解答,注意合理地进行等价转化.15、3【解析】
易知直线过定点,再结合图形求解.【详解】依题意得直线过定点,如图:若两直线将圆分成三个部分,则直线必须与圆相交于图中阴影部分.又,所以的取值范围是;当直线位于时,划分成的三个部分中有两部分的面积相等.【点睛】本题考查直线和圆的位置关系的应用,直线的斜率,结合图形是此题的关键.16、﹣【解析】试题分析:利用任意角三角函数定义求解.解:∵a>0,角α的终边经过点P(﹣3a,4a),∴x=﹣3a,y=4a,r==5a,∴sinα+2cosα==﹣.故答案为﹣.考点:任意角的三角函数的定义.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)B(0,7)(2)19x+y-7=0【解析】
(1)联立直线AB,BD的方程,求出点B坐标;(2)求出点C12,-52,利用B,C【详解】由A(4,3)及AB边上的高所在直线为x-y-3=0,得AB所在直线方程为x+y-7=0又BD所在直线方程为3x+y-7=0由3x+y-7=0x+y-7=0,得B(0,7)(2)设C(m,n),又A(4,3),D为AC中点,则Dm+4由已知得3×m+42+又B(0,7)得直线BC的方程为19x+y-7=0.【点睛】考查直线的垂直关系、直线的交点坐标、直线方程的求法等,考查运算求解能力.18、(1)(2)3;(3)【解析】
(1)根据题意,结合两点间距离公式,可以得到等式,化简后得到点的坐标所满足的关系式;(2)设是曲线上任一点,求出的表达式,结合的取值范围,可以求出面积的最大值;(3)恒成立,则恒成立.设,当它与圆相切时,取得最大和最小值,利用点到直线距离公式,可以求出取得最大和最小值,最后可以求出实数的取值范围.【详解】(1)设的坐标是,由,得,化简得.(2)由(1)得,点在以为圆心,为半径的圆上.设是曲线上任一点,则,又,故的最大值为:.(3)由(1)得:圆的方程是若恒成立,则恒成立.设,当它与圆相切时,取得最大和最小值,由得:,,故当时,原不等式恒成立.【点睛】本题考查了求点的轨迹方程,考查了直线与圆的位置关系,考查了求三角形面积最大值问题,考查了数学运算能力.19、(1);(2)【解析】
(1)根据垂直数量积为0求解即可.(2)根据平行的公式求解,再计算即可.【详解】解:(1)由已知得,,解得或.因为,所以.(2)若,则,所以或.因为,所以.所以,所以.【点睛】本题主要考查了向量垂直与平行的运用以及模长的计算,属于基础题型.20、(1)或(2)存在,,【解析】
(1)先设与直线l垂直的直线方程为,再结合点到直线的距离公式求解即可;(2)先设存在,利用都有为常数及在圆上,列出等式,然后利用恒成立求解即可.【详解】解:(1)由直线.则可设与直线l垂直的直线方程为,又该直线与圆相切,则,则,故所求直线方程为或;(2)假设存在定点使得对于圆C上任一点P,为常数,则,所以,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 外协供应商考核制度
- 业务员奖罚考核制度
- 教研员量化考核制度
- 矿井安检员考核制度
- 业务流程及考核制度
- 汽车销售团队考核制度
- 环保工程部考核制度
- 共享单车季度考核制度
- 电工外线班组考核制度
- 操作工绩效考核制度
- 常州市2025-2026学年第一学期高三期末质量调研政治+答案
- 签字版离婚协议书范本
- 《神笔马良》:儿童读书分享
- 外研版五年级英语下册单词表
- 《木兰诗》历年中考古诗欣赏试题汇编(截至2024年)
- 技能认证催化高级考试(习题卷28)
- 拖欠工程款民事判决书
- GB/T 17431.2-2010轻集料及其试验方法第2部分:轻集料试验方法
- 2011~2020年上海市高考语文文言文真题译文全集
- 设立年产20万吨固体氢氧化钠项目安全评估报告
- 主斜井管路安装
评论
0/150
提交评论