版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届安徽省省级示范高中高一下数学期末综合测试试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.角的终边落在()A.第一象限 B.第二象限 C.第三象限 D.第四象限2.菱形ABCD,E是AB边靠近A的一个三等分点,DE=4,则菱形ABCD面积最大值为()A.36 B.18 C.12 D.93.数列的首项为,为等差数列,且(),若,,则()A. B. C. D.4.椭圆中以点M(1,2)为中点的弦所在直线斜率为()A. B. C. D.5.已知等差数列的公差d>0,则下列四个命题:①数列是递增数列;②数列是递增数列;③数列是递增数列;④数列是递增数列;其中正确命题的个数为()A.1 B.2 C.3 D.46.将函数图像上的每一个点的横坐标缩短为原来的一半,纵坐标不变,再将所得图像向左平移个单位得到数学函数的图像,在图像的所有对称轴中,离原点最近的对称轴为()A. B. C. D.7.给出下面四个命题:①;②;③;④.其中正确的个数为()A.1个 B.2个 C.3个 D.4个8.已知圆C与直线和直线都相切,且圆心C在直线上,则圆C的方程是()A. B.C. D.9.设,,均为正实数,则三个数,,()A.都大于2 B.都小于2C.至少有一个不大于2 D.至少有一个不小于210.设,若,则数列是()A.递增数列 B.递减数列C.奇数项递增,偶数项递减的数列 D.偶数项递增,奇数项递减的数列二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数在时取得最小值,则________.12.已知三点A(1,0),B(0,),C(2,),则△ABC外接圆的圆心到原点的距离为________.13.与30°角终边相同的角_____________.14.已知,则的最小值是__________.15.涡阳一中某班对第二次质量检测成绩进行分析,利用随机数表法抽取个样本时,先将个同学按、、、、进行编号,然后从随机数表第行第列的数开始向右读(注:如表为随机数表的第行和第行),则选出的第个个体是______.16.已知两条直线,将圆及其内部划分成三个部分,则的取值范围是_______;若划分成的三个部分中有两部分的面积相等,则的取值有_______种可能.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数(1)求的最小正周期;(2)求的单调增区间;(3)若求函数的值域.18.已知是递增数列,其前项和为,,且,.(Ⅰ)求数列的通项;(Ⅱ)是否存在使得成立?若存在,写出一组符合条件的的值;若不存在,请说明理由;(Ⅲ)设,若对于任意的,不等式恒成立,求正整数的最大值.19.已知向量,(1)若,求的坐标;(2)若与垂直,求的值.20.在平面直角坐标系中,已知向量,,.(1)若,求的值;(2)若与的夹角为,求的值.21.设平面三点、、.(1)试求向量的模;(2)若向量与的夹角为,求;(3)求向量在上的投影.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】
由,即可判断.【详解】,则与的终边相同,则角的终边落在第三象限故选:C【点睛】本题主要考查了判断角的终边所在象限,属于基础题.2、B【解析】
设出菱形的边长,在三角形ADE中,用余弦定理表示出cosA【详解】设菱形的边长为3a,在三角形ADE中,AD=3a,AE=a,DE=4,有余弦定理得cosA=10a2-166a故选:B【点睛】本小题主要考查余弦定理解三角形,考查同角三角函数的基本关系式,考查菱形的面积公式,考查二次函数最值的求法,属于中档题.3、B【解析】由题意可设等差数列的首项为,公差为,所以所以,所以,即=2n-8,=,所以,选B.4、A【解析】
先设出弦的两端点的坐标,分别代入椭圆方程,两式相减后整理即可求得弦所在的直线的斜率.【详解】设弦的两端点为,,代入椭圆得,两式相减得,即,即,即,即,∴弦所在的直线的斜率为,故选A.【点睛】本题主要考查了椭圆的性质以及直线与椭圆的关系.在解决弦长的中点问题,涉及到“中点与斜率”时常用“点差法”设而不求,将弦所在直线的斜率、弦的中点坐标联系起来,相互转化,达到解决问题的目的,属于中档题.5、B【解析】
对于各个选项中的数列,计算第n+1项与第n项的差,看此差的符号,再根据递增数列的定义得出结论.【详解】设等差数列,d>0∵对于①,n+1﹣n=d>0,∴数列是递增数列成立,是真命题.对于②,数列,得,,所以不一定是正实数,即数列不一定是递增数列,是假命题.对于③,数列,得,,不一定是正实数,故是假命题.对于④,数列,故数列是递增数列成立,是真命题.故选:B.【点睛】本题考查用定义判断数列的单调性,考查学生的计算能力,正确运用递增数列的定义是关键,属于基础题.6、A【解析】分析:根据平移变换可得,根据放缩变换可得函数的解析式,结合对称轴方程求解即可.详解:将函数的图象上的每个点的横坐标缩短为原来的一半,纵坐标不变,得到,再将所得图象向左平移个单位得到函数的图象,即,由,得,当时,离原点最近的对称轴方程为,故选A.点睛:本题主要考查三角函数的图象与性质,属于中档题.由函数可求得函数的周期为;由可得对称轴方程;由可得对称中心横坐标.7、B【解析】①;②;③;④,所以正确的为①②,选B.8、B【解析】
设出圆的方程,利用圆心到直线的距离列出方程求解即可【详解】∵圆心在直线上,∴可设圆心为,设所求圆的方程为,则由题意,解得∴所求圆的方程为.选B【点睛】直线与圆的问题绝大多数都是转化为圆心到直线的距离公式进行求解9、D【解析】
由题意得,当且仅当时,等号成立,所以至少有一个不小于,故选D.10、C【解析】
根据题意,由三角函数的性质分析可得,进而可得函数为减函数,结合函数与数列的关系分析可得答案。【详解】根据题意,,则,指数函数为减函数即即即即,数列是奇数项递增,偶数项递减的数列,故选:C.【点睛】本题涉及数列的函数特性,利用函数单调性,通过函数的大小,反推变量的大小,是一道中档题目。二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】试题分析:因为,所以,当且仅当即,由题意,解得考点:基本不等式12、【解析】
求出的垂直平分线方程,两垂直平分线交点为外接圆圆心.再由两点间距离公式计算.【详解】由点B(0,),C(2,),得线段BC的垂直平分线方程为x=1,①由点A(1,0),B(0,),得线段AB的垂直平分线方程为②联立①②,解得△ABC外接圆的圆心坐标为,其到原点的距离为.故答案为:【点睛】本题考查三角形外接圆圆心坐标,外心是三角形三条边的中垂线的交点,到三顶点距离相等.13、【解析】
根据终边相同的角的定义可得答案.【详解】与30°角终边相同的角,故答案为:【点睛】本题考查了终边相同的角的定义,属于基础题.14、【解析】分析:利用题设中的等式,把的表达式转化成,展开后,利用基本不等式求得y的最小值.详解:因为,所以,所以(当且仅当时等号成立),则的最小值是,总上所述,答案为.点睛:该题考查的是有关两个正数的整式形式和为定值的情况下求其分式形式和的最值的问题,在求解的过程中,注意相乘,之后应用基本不等式求最值即可,在做乘积运算的时候要注意乘1是不变的,如果不是1,要做除法运算.15、.【解析】
根据随机数法列出前个个体的编号,即可得出答案.【详解】由随机数法可知,前个个体的编号依次为、、、、、、,因此,第个个体是,故答案为.【点睛】本题考查随机数法读取样本个体编号,读取时要把握两个原则:(1)看样本编号最大数为几位数,读取时就几个数连着一起取;(2)不在编号范围内的号码要去掉,重复的只能取第一次.16、3【解析】
易知直线过定点,再结合图形求解.【详解】依题意得直线过定点,如图:若两直线将圆分成三个部分,则直线必须与圆相交于图中阴影部分.又,所以的取值范围是;当直线位于时,划分成的三个部分中有两部分的面积相等.【点睛】本题考查直线和圆的位置关系的应用,直线的斜率,结合图形是此题的关键.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2);(3).【解析】
(1)先化简函数f(x)的解析式,再求函数的最小正周期;(2)解不等式,即得函数的增区间;(3)根据三角函数的性质求函数的值域.【详解】(1)由题得,所以函数的最小正周期为.(2)令,所以,所以函数的单调增区间为.(3),所以函数的值域为.【点睛】本题主要考查三角恒等变换,考查三角函数的图像和性质,考查三角函数的值域,意在考查学生对这些知识的理解掌握水平,属于基础题.18、(1)(2)不存在(3)1【解析】
(Ⅰ),得,解得,或.由于,所以.因为,所以.故,整理,得,即.因为是递增数列,且,故,因此.则数列是以2为首项,为公差的等差数列.所以.………………5分(Ⅱ)满足条件的正整数不存在,证明如下:假设存在,使得,则.整理,得,①显然,左边为整数,所以①式不成立.故满足条件的正整数不存在.……1分(Ⅲ),不等式可转化为.设,则.所以,即当增大时,也增大.要使不等式对于任意的恒成立,只需即可.因为,所以.即.所以,正整数的最大值为1.………14分19、(1);(2)【解析】
(1)直接由向量的数乘及减法运算求解;(2)由向量的数乘及减法运算求得的坐标,再由向量垂直的坐标运算求解.【详解】(1).(2)与垂直,,即,∴.【点睛】本题考查平面向量的坐标运算、考查向量垂直的坐标表示,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,属于基础题.20、(1)1(2)【解析】
(1).若,则,结合三角函数的关系式即可求的值;
(2).若与的夹角为,利用向量的数量积的坐标公式进行求解即可求的值.【详解】(1)由,则即,所以所以(2),又与的夹角为,则即即由,则所以,即【点睛】本题主要考查向量数量积的定义和坐标公式的应用,考查学生的计算能力,属于基础题.21、(1);(2);(3).【
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 小学 安全考核制度
- 选修课教师考核制度
- 小区物业绿化考核制度
- 内部控制工作考核制度
- 殡仪馆绩效考核制度
- 物业项目内部考核制度
- 养老机构康复师岗位培训考试专项练习含答案
- 输血安全知识培训试题(+答案解析)
- 中学《中学生守则》与《中学生日常行为规范》测试题答案急急急急急
- 高频零售业场景面试题及答案
- 老年患者的尊严护理与人文关怀
- 传染病的流行病学特点及防控措施
- 仲裁法课件教学课件
- 博物馆讲解员面试题目集
- 2025乍得矿产勘探行业现状调研与资源资本配置规划
- 旅游景区客流预测模型构建分析方案
- 漂流安全管理制度
- 文物建筑勘查设计取费标准(2020年版)
- 福建省中小学幼儿园教师职务申报表
- 有机电子材料与器件
- 物流行业转型与挑战试题及答案
评论
0/150
提交评论