版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
甘肃省白银市平川区中恒学校2026届数学高一下期末联考模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知无穷等比数列的公比为,前项和为,且,下列条件中,使得恒成立的是()A., B.,C., D.,2.我国古代数学名著《数书九章》有“米谷粒分”题:粮仓开仓收粮,有人送来米1500石,验得米内夹谷,抽样取米一把,数得250粒内夹谷30粒,则这批米内夹谷约为多少石?A.180 B.160 C.90 D.3603.已知实心铁球的半径为,将铁球熔成一个底面半径为、高为的圆柱,则()A. B. C. D.4.一个盒子内装有大小相同的红球、白球和黑球若干个,从中摸出1个球,若摸出红球的概率是0.45,摸出白球的概率是0.25,那么摸出黑球或红球的概率是()A.0.3 B.0.55 C.0.7 D.0.755.已知集合,则()A. B. C. D.6.对于数列,定义为数列的“好数”,已知某数列的“好数”,记数列的前项和为,若对任意的恒成立,则实数的取值范围为()A. B. C. D.7.设等比数列的公比,前项和为,则()A. B. C. D.8.如图所示的阴影部分是由轴及曲线围成,在矩形区域内随机取一点,则该点取自阴影部分的概率是()A. B. C. D.9.已知直线,平面,给出下列命题:①若,且,则②若,且,则③若,且,则④若,且,则其中正确的命题是()A.①③ B.②④ C.③④ D.①②10.若不等式对任意,恒成立,则实数的取值范围是()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知,为第二象限角,则________12.若等比数列满足,且公比,则_____.13.数列满足:(且为常数),,当时,则数列的前项的和为________.14.圆和圆交于A,B两点,则弦AB的垂直平分线的方程是________.15.在中,角所对的边分别为,下列命题正确的是_____________.①总存在某个内角,使得;②存在某钝角,有;③若,则的最小角小于.16.已知三棱锥外接球的表面积为,面,则该三棱锥体积的最大值为____。三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,在三棱柱中,是边长为4的正三角形,侧面是矩形,分别是线段的中点.(1)求证:平面;(2)若平面平面,,求三棱锥的体积.18.某销售公司拟招聘一名产品推销员,有如下两种工资方案:方案一:每月底薪2000元,每销售一件产品提成15元;方案二:每月底薪3500元,月销售量不超过300件,没有提成,超过300件的部分每件提成30元.(1)分别写出两种方案中推销员的月工资(单位:元)与月销售产品件数的函数关系式;(2)从该销售公司随机选取一名推销员,对他(或她)过去两年的销售情况进行统计,得到如下统计表:月销售产品件数300400500600700次数24954把频率视为概率,分别求两种方案推销员的月工资超过11090元的概率.19.已知圆:.(Ⅰ)求过点的圆的切线方程;(Ⅱ)设圆与轴相交于,两点,点为圆上异于,的任意一点,直线,分别与直线交于,两点.(ⅰ)当点的坐标为时,求以为直径的圆的圆心坐标及半径;(ⅱ)当点在圆上运动时,以为直径的圆被轴截得的弦长是否为定值?请说明理由.20.如图,四棱锥中,,平面平面,,为的中点.(1)求证://平面;(2)求点到面的距离(3)求二面角平面角的正弦值21.已知关于的一元二次函数,从集合中随机取一个数作为此函数的二次项系数,从集合中随机取一个数作为此函数的一次项系数.(1)若,,求函数有零点的概率;(2)若,求函数在区间上是增函数的概率.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】
由已知推导出,由此利用排除法能求出结果.【详解】,,,,,若,则,故A与C不可能成立;若,则,故B成立,D不成立.故选:B【点睛】本题考查了等比数列的前项和公式以及排除法在选择题中的应用,属于中档题.2、A【解析】
根据数得250粒内夹谷30粒,根据比例,即可求得结论。【详解】设批米内夹谷约为x石,则,解得:选A。【点睛】此题考查简单随机抽样,根据部分的比重计算整体值。3、B【解析】
根据变化前后体积相同计算得到答案.【详解】故答案选B【点睛】本题考查了球体积,圆柱体积,抓住变化前后体积不变是解题的关键.4、D【解析】
由题意可知摸出黑球的概率,再根据摸出黑球,摸出红球为互斥事件,根据互斥事件的和即可求解.【详解】因为从中摸出1个球,若摸出红球的概率是0.45,摸出白球的概率是0.25,所以摸出黑球的概率是,因为从盒子中摸出1个球为黑球或红球为互斥事件,所以摸出黑球或红球的概率,故选D.【点睛】本题主要考查了两个互斥事件的和事件,其概率公式,属于中档题.5、A【解析】
由,得,然后根据集合的交集运算,即可得到本题答案.【详解】因为,所以.故选:A【点睛】本题主要考查集合的交集运算及对数不等式.6、B【解析】分析:由题意首先求得的通项公式,然后结合等差数列的性质得到关于k的不等式组,求解不等式组即可求得最终结果.详解:由题意,,则,很明显n⩾2时,,两式作差可得:,则an=2(n+1),对a1也成立,故an=2(n+1),则an−kn=(2−k)n+2,则数列{an−kn}为等差数列,故Sn⩽S6对任意的恒成立可化为:a6−6k⩾0,a7−7k⩽0;即,解得:.实数的取值范围为.本题选择B选项.点睛:“新定义”主要是指即时定义新概念、新公式、新定理、新法则、新运算五种,然后根据此新定义去解决问题,有时还需要用类比的方法去理解新的定义,这样有助于对新定义的透彻理解.对于此题中的新概念,对阅读理解能力有一定的要求.但是,透过现象看本质,它们考查的还是基础数学知识,所以说“新题”不一定是“难题”,掌握好三基,以不变应万变才是制胜法宝.7、C【解析】
利用等比数列的前n项和公式表示出,利用等比数列的通项公式表示出,计算即可得出答案。【详解】因为,所以故选C【点睛】本题考查等比数列的通项公式与前n项和公式,属于基础题。8、A【解析】,所以,故选A。9、A【解析】
根据面面垂直,面面平行的判定定理判断即可得出答案。【详解】①若,则在平面内必有一条直线使,又即,则,故正确。②若,且,与可平行可相交,故错误③若,即又,则,故正确④若,且,与可平行可相交,故错误所以①③正确,②④错误故选A【点睛】本题考查面面垂直,面面平行的判定,属于基础题。10、B【解析】∵不等式对任意,恒成立,∴,∵,当且仅当,即时取等号,∴,∴,∴,∴实数的取值范围是,故选B.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
先求解,再求解,再利用降幂公式求解即可.【详解】由,又为第二象限角,故,且.又.故答案为:【点睛】本题主要考查了降幂公式的用法等,属于基础题型.12、.【解析】
利用等比数列的通项公式及其性质即可得出.【详解】,故答案为:1.【点睛】本题考查了等比数列的通项公式及其性质,考查了推理能力与计算能力,属于容易题.13、【解析】
直接利用分组法和分类讨论思想求出数列的和.【详解】数列满足:(且为常数),,当时,则,所以(常数),故,所以数列的前项为首项为,公差为的等差数列.从项开始,由于,所以奇数项为、偶数项为,所以,故答案为:【点睛】本题考查了由递推关系式求数列的性质、等差数列的前项和公式,需熟记公式,同时也考查了分类讨论的思想,属于中档题.14、【解析】
弦AB的垂直平分线即两圆心连线.【详解】弦AB的垂直平分线即两圆心连线方程为故答案为【点睛】本题考查了弦的垂直平分线,转化为过圆心的直线可以简化运算.15、①③【解析】
①中,根据直角三角形、锐角三角形和钝角三角形分类讨论,得出必要一个角在内,即可判定;②中,利用两角和的正切公式,化简得到,根据钝角三角形,即可判定;③中,利用向量的运算,得到,由于不共线,得到,再由余弦定理,即可判定.【详解】由题意,对于①中,在中,当,则,若为直角三角形,则必有一个角在内;若为锐角三角形,则必有一个内角小于等于;若为钝角三角形,也必有一个角小于内,所以总存在某个内角,使得,所以是正确的;对于②中,在中,由,可得,由为钝角三角形,所以,所以,所以不正确;对于③中,若,即,即,由于不共线,所以,即,由余弦定理可得,所以最小角小于,所以是正确的.综上可得,命题正确的是①③.故答案为:①③.【点睛】本题以真假命题为载体,考查了正弦、余弦定理的应用,以及向量的运算及应用,其中解答中熟练应用解三角形的知识和向量的运算进行化简是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.16、【解析】
根据球的表面积计算出球的半径.利用勾股定理计算出三角形外接圆的半径,根据正弦定理求得的长,再根据圆内三角形面积的最大值求得三角形面积的最大值,由此求得三棱锥体积的最大值.【详解】画出图像如下图所示,其中是外接球的球心,是底面三角形的外心,.设球的半径为,三角形外接圆的半径为,则,故在中,.在三角形中,由正弦定理得.故三角形为等边三角形,其高为.由于为定值,而三角形的高等于时,三角形的面积取得最大值,由于为定值,故三棱锥的体积最大值为.【点睛】本小题主要考查外接球有关计算,考查三棱锥体积的最大值的计算,属于中档题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见解析(2)【解析】
(1)取中点为,连接,由中位线定理证得,即证得平行四边形,于是有,这样就证得线面平行;(2)由等体积法变换后可计算.【详解】证明:(1)取中点为,连接,是平行四边形,平面,平面,∴平面解:(2)是线段中点,则【点睛】本题考查线面平行的判定,考查棱锥的体积.线面平行的证明关键是找到线线平行,而棱锥的体积常常用等积变换,转化顶点与底.18、(1);(2)方案一概率为,方案二概率为.【解析】
(1)利用一次函数和分段函数分别表示方案一、方案二的月工资与的关系式;(2)分别计算方案一、方案二的推销员的月工资超过11090元的概率值.【详解】解:(1)方案一:,;方案二:月工资为,所以.(2)方案一中推销员的月工资超过11090元,则,解得,所以方案一中推销员的月工资超过11090元的概率为;方案二中推销员的月工资超过11090元,则,解得,所以方案二中推销员的月工资超过11090元的概率为.【点睛】本题考查了分段函数与应用问题,也考查了利用频率估计概率的应用问题,意在考查学生对这些知识的理解掌握水平和分析推理能力,属于基础题.19、(Ⅰ)或;(Ⅱ)(ⅰ)圆心为,半径;(ⅱ)见解析【解析】
(Ⅰ)先判断在圆外,所以圆过点的切线有两条.再由斜率是否存在分别讨论.(Ⅱ)(ⅰ)设直线PA和PB把其与直线交于,两点表示出来,写出圆的方程化简即可.(ⅱ)先求出以为直径的圆被轴截得的弦长,在设出PA和PB的直线方程,分别求出与直线的交点,求出圆心,再根据勾股定理易求解.【详解】(Ⅰ)因为点在圆外,所以圆过点的切线有两条.当直线的斜率不存在时,直线方程为,满足条件.当直线的斜率存在时,可设为,即.由圆心到切线的距离,解得.此时切线方程为.综上,圆的切线方程为或.(Ⅱ)因为圆与轴相交于,两点,所以,.(ⅰ)当点坐标为时,直线的斜率为,直线的方程为.直线与直线的交点坐标为,同理直线的斜率为,直线的方程为.直线与直线的交点坐标为.所以以为直径的圆的圆心为,半径.(ⅱ)以为直径的圆被轴截得的弦长为定值.设点,则.直线的斜率为,直线的方程为.直线与直线的交点坐标为.同理直线的斜率为,直线的方程为.直线与直线的交点坐标为.所以圆的圆心,半径为.方法一:圆被轴截得的弦长为.所以以为直径的圆被轴截得的弦长为定值.方法二:圆的方程为.令,解得.所以.所以圆与轴的交点坐标分别为,.所以以为直径的圆被轴截得的弦长为定值.【点睛】此题考查解析几何中关于圆的题目,一般做法是设而不求,将需要的信息表示出来再化简求值,属于一般性题目.20、(1)见详解;(2);(3)【解析】
(1)通过取中点,利用中位线定理可得四变形为平行四边形,然后利用线面平行的判定定理,可得结果.(2)根据,可得平面,可得结果.(3)作,作,可得二面角平面角为,然后计算,可得结果.【详解】(1)取中点,连接,如图由为的中点,所以//且又,且,所以//且,故//且,所以四变形为平行四边形
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 妇联责任督促考核制度
- 单位用水用电考核制度
- 组织部成员考核制度
- 湖北省宜昌市长阳县第一高级中学2026届数学高一下期末达标检测模拟试题含解析
- 2026届内蒙古高三上学期1月质量检测地理试题及答案
- 高频河北幼师面试试题及答案
- 售前行业法规遵守情况自查试题库及答案
- 青花瓷考试问题及答案
- 体检前台服务流程及高枕无忧VIP陪检服务测试卷附答案
- 田林县法官检察官遴选试题及答案
- 2026高考数学复习高效培优专题2.4 导数与三角函数的综合(解析版)
- GB/T 19683-2025轨道式集装箱门式起重机
- 无锡纺织印染知识培训课件
- 首届全国行业职业技能竞赛(电力交易员)大赛考试题库-中(多选题)
- 中国-东盟自由贸易区:建设历程、发展现状、挑战与突破路径
- 2025年自动驾驶汽车与智能交通系统协同发展研究报告
- 祠堂建设项目可行性研究报告
- 小学四年级语文上册阅读理解(15篇)
- 分级护理标准解读
- 2025年全国统一高考语文试卷(全国一卷)含答案
- 高速公路施工方案(全)
评论
0/150
提交评论