河北省张家口市涿鹿中学2026届高一数学第二学期期末检测试题含解析_第1页
河北省张家口市涿鹿中学2026届高一数学第二学期期末检测试题含解析_第2页
河北省张家口市涿鹿中学2026届高一数学第二学期期末检测试题含解析_第3页
河北省张家口市涿鹿中学2026届高一数学第二学期期末检测试题含解析_第4页
河北省张家口市涿鹿中学2026届高一数学第二学期期末检测试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河北省张家口市涿鹿中学2026届高一数学第二学期期末检测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若点在点的北偏东70°,点在点的南偏东30°,且,则点在点的()方向上.A.北偏东20° B.北偏东30° C.北偏西30° D.北偏西15°2.若向量=,||=2,若·(-)=2,则向量与的夹角()A. B. C. D.3.数列的通项公式,其前项和为,则等于()A. B. C. D.4.在同一直角坐标系中,函数且的图象可能是()A. B.C. D.5.已知函数,,若成立,则的最小值为()A. B. C. D.6.下列两个变量之间的关系不是函数关系的是()A.出租车车费与出租车行驶的里程B.商品房销售总价与商品房建筑面积C.铁块的体积与铁块的质量D.人的身高与体重7.若向量,,则在方向上的投影为()A.-2 B.2 C. D.8.设函数是定义在上的奇函数,当时,,则()A.-4 B. C. D.9.在等差数列中,若,则()A.45 B.75 C.180 D.32010.已知向量,满足,,,则()A.3 B.2 C.1 D.0二、填空题:本大题共6小题,每小题5分,共30分。11.某中学为了了解全校学生的阅读情况,在全校采用随机抽样的方法抽取一个样本进行问卷调查,并将他们在一个月内去图书馆的次数进行了统计,将学生去图书馆的次数分为5组:制作了如图所示的频率分布表,则抽样总人数为_______.12.已知原点O(0,0),则点O到直线x+y+2=0的距离等于.13.在平面直角坐标系xOy中,双曲线的右支与焦点为F的抛物线交于A,B两点若,则该双曲线的渐近线方程为________.14.已知数列,其中,若数列中,恒成立,则实数的取值范围是_______.15.设满足约束条件,则目标函数的最大值为______.16.已知数列的前项和为,若,则______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.等差数列中,.(1)求的通项公式;(2)设,求数列的前项和.18.(2012年苏州17)如图,在中,已知为线段上的一点,且.(1)若,求的值;(2)若,且,求的最大值.19.在中,,且边上的中线长为,(1)求角的大小;(2)求的面积.20.已知函数的最小正周期是.(1)求的值及函数的单调递减区间;(2)当时,求函数的取值范围.21.已知余切函数.(1)请写出余切函数的奇偶性,最小正周期,单调区间;(不必证明)(2)求证:余切函数在区间上单调递减.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】

作出方位角,根据等腰三角形的性质可得.【详解】如图,,,则,∵,∴,而,∴∴点在点的北偏东20°方向上.故选:A.【点睛】本题考查方位角概念,掌握方位角的定义是解题基础.方位角是以南北向为基础,北偏东,北偏西,南偏东,南偏西等等.2、A【解析】

根据向量的数量积运算,向量的夹角公式可以求得.【详解】由已知可得:,得,设向量与的夹角为,则所以向量与的夹角为故选A.【点睛】本题考查向量的数量积运算和夹角公式,属于基础题.3、B【解析】

依据为周期函数,得到,并项求和,即可求出的值。【详解】因为为周期函数,周期为4,所以,,故选B。【点睛】本题主要考查数列求和方法——并项求和法的应用,以及三角函数的周期性,分论讨论思想,意在考查学生的推理论证和计算能力。4、D【解析】

本题通过讨论的不同取值情况,分别讨论本题指数函数、对数函数的图象和,结合选项,判断得出正确结论.题目不难,注重重要知识、基础知识、逻辑推理能力的考查.【详解】当时,函数过定点且单调递减,则函数过定点且单调递增,函数过定点且单调递减,D选项符合;当时,函数过定点且单调递增,则函数过定点且单调递减,函数过定点且单调递增,各选项均不符合.综上,选D.【点睛】易出现的错误有,一是指数函数、对数函数的图象和性质掌握不熟,导致判断失误;二是不能通过讨论的不同取值范围,认识函数的单调性.5、B【解析】,则,所以,则,易知,,则在单调递减,单调递增,所以,故选B。点睛:本题考查导数的综合应用。利用导数求函数的极值和最值是导数综合应用题型中的常见考法。通过求导,首先观察得到导函数的极值点,利用图象判断出单调增减区间,得到最值。6、D【解析】

根据函数的概念来进行判断。【详解】对于A选项,出租车车费实行分段收费,与出租车行驶里程成分段函数关系;对于B选项,商品房的销售总价等于商品房单位面积售价乘以商品房建筑面积,商品房销售总价与商品房建筑面积之间是一次函数关系;对于C选项,铁块的质量等于铁块的密度乘以铁块的体积,铁块的体积与铁块的质量是一次函数关系;对于D选项,有些人又高又瘦,有些人又矮又胖,人的身高与体重之间没有必然联系,因人而异,D选项中两个变量之间的关系不是函数关系。故选:D。【点睛】本题考查函数概念的理解,充分理解两个变量之间是“一对一”或“多对一”的形式,考查学生对这些概念的理解,属于基础题。7、A【解析】向量,,所以,||=5,所以在方向上的投影为=-2故选A8、A【解析】

由奇函数的性质可得:即可求出【详解】因为是定义在上的奇函数,所以又因为当时,,所以,所以,选A.【点睛】本题主要考查了函数的性质中的奇偶性。其中奇函数主要有以下几点性质:1、图形关于原点对称。2、在定义域上满足。3、若定义域包含0,一定有。9、C【解析】试题分析:因为数列为等差数列,且,所以,,从而,所以,而,所以,故选C.考点:等差数列的性质.10、A【解析】

由,求出,代入计算即可.【详解】由题意,则.故答案为A.【点睛】本题考查了向量的数量积,考查了学生的计算能力,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、20【解析】

总体人数占的概率是1,也可以理解成每个人在整体占的比重一样,所以三组的频率为:,共有14人,即14人占了整体的0.7,那么整体共有人。【详解】前三组,即三组的频率为:,,解得:【点睛】此题考查概率,通过部分占总体的概率即可计算出总体的样本值,属于简单题目。12、【解析】

由点到直线的距离公式得:点O到直线x+y+2=0的距离等于,故答案为.13、【解析】

根据题意到,联立方程得到,得到答案.【详解】,故.,故,故,故.故双曲线渐近线方程为:.故答案为:.【点睛】本题考查了双曲线的渐近线问题,意在考查学生的计算能力和综合应用能力.14、【解析】

由函数(数列)单调性确定的项,哪些项取,哪些项取,再由是最小项,得不等关系.【详解】由题意数列是递增数列,数列是递减数列,存在,使得时,,当时,,∵数列中,是唯一的最小项,∴或,或,或,综上.∴的取值范围是.故答案为:.【点睛】本题考查数列的单调性与最值.解题时楞借助函数的单调性求解.但数列是特殊的函数,它的自变量只能取正整数,因此讨论时与连续函数有一些区别.15、7【解析】

首先画出可行域,然后判断目标函数的最优解,从而求出目标函数的最大值.【详解】如图,画出可行域,作出初始目标函数,平移目标函数,当目标函数过点时,目标函数取得最大值,,解得,.故填:7.【点睛】本题考查了线性规划问题,属于基础题型.16、【解析】

利用和的关系计算得到答案.【详解】当时,满足通项公式故答案为【点睛】本题考查了和的关系,忽略的情况是容易发生的错误.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】

(1)设等差数列{an}的公差为d,则an=a1+(n-1)d.因为所以.解得a1=1,d=.所以{an}的通项公式为an=.(2)bn==,所以Sn=18、(1);(2).【解析】试题分析:(1)利用平面向量基本定理可得.(2)利用题意可得,则的最大值为.试题解析:(1),而,∴.(2)∴当时,的最大值为.19、(Ⅰ);(Ⅱ).【解析】

(1)本题可根据三角函数相关公式将化简为,然后根据即可求出角的大小;(2)本题首先可设的中点为,然后根据向量的平行四边形法则得到,再然后通过化简计算即可求得,最后通过三角形面积公式即可得出结果.【详解】(1)由正弦定理边角互换可得,所以.因为,所以,即,即,整理得.因为,所以,所以,即,所以.因为,所以,即.(2)设的中点为,根据向量的平行四边形法则可知所以,即,因为,,所以,解得(负值舍去).所以.【点睛】本题考查三角恒等变换公式及解三角形相关公式的应用,考查了向量的平行四边形法则以及向量的运算,考查了化归与转化思想,体现了综合性,是难题.20、(1),减区间为;(2)【解析】

(1)利用倍角公式将函数化成的形式,再利用周期公式求出的值,并将代入区间,求出即可;(2)由求得,利用单位圆中的三角函数线,即可得答案.【详解】(1),,;,,的单调递减区间为.(2)由得,利用单位圆中的三角函数线可得:,∴.【点睛】本题考查三角恒等变换中倍角公式的应用、周期公式、值域求解,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意角

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论